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Recent advances in fMRI research highlight the use of multivariate methods for

examining whole-brain connectivity. Complementary data-drivenmethods are needed for

determining the subset of predictors related to individual differences. Although commonly

used for this purpose, ordinary least squares (OLS) regression may not be ideal due

to multi-collinearity and over-fitting issues. Penalized regression is a promising and

underutilized alternative to OLS regression. In this paper, we propose a nonparametric

bootstrap quantile (QNT) approach for variable selection with neuroimaging data. We

use real and simulated data, as well as annotated R code, to demonstrate the benefits

of our proposed method. Our results illustrate the practical potential of our proposed

bootstrap QNT approach. Our real data example demonstrates how our method can be

used to relate individual differences in neural network connectivity with an externalizing

personality measure. Also, our simulation results reveal that the QNT method is effective

under a variety of data conditions. Penalized regression yields more stable estimates and

sparser models than OLS regression in situations with large numbers of highly correlated

neural predictors. Our results demonstrate that penalized regression is a promising

method for examining associations between neural predictors and clinically relevant traits

or behaviors. These findings have important implications for the growing field of functional

connectivity research, where multivariate methods produce numerous, highly correlated

brain networks.

Keywords: penalized regression, bootstrap, fMRI, functional connectivity, individual differences, independent

component analysis

1. INTRODUCTION

Multivariate methods for analyzing functional magnetic resonance imaging (fMRI) data, such as
independent component analysis (ICA; McKeown et al., 1998), are becoming increasingly popular
for exploring the brain’s resting functional connectivity (Miller and D’Esposito, 2005; De Luca et al.,
2006; Churchill et al., 2014). Data-driven methods like ICA are able to reduce the dimensionality
of fMRI data from an immense number of voxels to a manageable number of components (or
networks) with interpretable functions (Laird et al., 2011; Duff et al., 2012). However, the ICA
process itself cannot tell us which networks are important to one or more criteria of interest. Thus,
additional methods are needed to identify the subset of substantively important networks. This
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latter point is particularly relevant to clinical neuroscience
research, where there is an increasing interest in understanding
how the aberrant organization or functionality of large-scale
brain networks contributes to psychiatric and neurological
disorders (Menon, 2011). Regression models, such as ordinary
least squares (OLS) regression, have often been used for this
purpose (Stevens et al., 2007; Kim et al., 2009; Mennes et al., 2010;
Eaton et al., 2012; Choi et al., 2013).

We advocate using penalized regression, often called
regularized regression (see Zou and Hastie, 2005; Kyung et al.,
2010), as a complementary data-driven method for selecting
networks or neural signals related to a criterion of interest. Our
specific example illustrates how to relate ICA-derived neural
networks with individual differences in maladaptive behaviors;
however, we will describe several additional applications
for which penalized regression is highly valuable in clinical
neuroscience research. In the present context, penalization refers
to the shrinkage of regression coefficients toward zero (James
et al., 2013, p. 204). It has been shown that this coefficient
attenuation reduces model over-fitting, and when coefficients are
shrunk to zero, penalized regression performs variable selection
(Tibshirani, 1996, 2011; Zou and Hastie, 2005). Currently, the
application of penalized regression in neuroscience research
is hampered by the lack of available methods for testing the
significance of penalized regression coefficients (see Lockhart
et al., 2014, for a discussion).

2. APPLICATION OF PENALIZED
REGRESSION TO FMRI

We are not the first to apply penalized regression to
neuroimaging data (e.g., see Valdés-Sosa et al., 2005; Carroll et al.,
2009; Bunea et al., 2011; Ryali et al., 2012; Luo et al., 2013;
Churchill et al., 2014; Watanabe et al., 2014; Chiang et al., 2015;
Kauttonen et al., 2015). However, few studies have used penalized
regression for purposes similar to ours (e.g., selecting clinical
or neuroimaging biomarkers that predict behavior). One recent
and promising approach for variable selection is the bootstrap
enhanced elastic net proposed by Bunea et al. (2011). This
method combines the nonparametric bootstrap with penalized
regression to perform variable selection for neuroimaging data.
Specifically, Bunea and colleagues recommend using the variable
inclusion probability (VIP), which is the percentage of bootstrap
replications in which a coefficient is estimated as non-zero. With
a proper Bayesian interpretation (see Bunea et al., 2011), the
VIP can be interpreted as the posterior probability of including
the j-th predictor in the model. After picking an appropriate
threshold, the VIP can be used to select predictors for use in
follow-up analyses. Bunea et al. (2011) used a 50% threshold,
but cautioned that “the threshold of 50% is user specified”
(p. 1523).

Although the VIP is theoretically appealing, there has been
little work exploring how the VIP performs in practice when
analyzing a collection of correlated predictors that are typical
of those encountered in neuroimaging research. With real
neuroimaging data, determining an appropriate threshold for the

VIP may be a challenging task. Bunea et al. (2011) recommend
the conservative threshold of 50% because their goal is “not to
miss any possibly relevant predictors” (p. 1523). It appears that
this 50% threshold may view Type II Errors (False Negatives)
as more costly than Type I Errors (False Positives). Uninformed
use of this 50% threshold could potentially result in many False
Positive findings. In neuroimaging research, attempts to replicate
False Positive findings can result in substantial wastes of research
resources (time and money), so a more stringent threshold
may be preferred. Nonetheless, further research is needed to
understand how to best use bootstrap enhanced results (with
or without VIPs) to perform variable selection and parameter
estimation when applying penalized regression to neuroimaging
data.

3. METHODOLOGICAL OBJECTIVES

In this paper, we show how computer-intensive methods, such
as bootstrapping (Efron, 1979; Efron and Tibshirani, 1993) and
Monte Carlo simulations, can be used to assess the significance
of penalized regression coefficients in neuroimaging applications.
To illustrate our proposed method, we use real neuroimaging
data to predict individual differences on a self-report measure
of externalizing personality traits (Krueger et al., 2002). Our
procedures advance foundational work by Bunea et al. (2011) in
three important ways. First, we demonstrate the relative strengths
of penalized regression over OLS regression in neuroimaging
datasets with highly correlated predictors. Second, we show how
a novel nonparametric bootstrap quantile (QNT) confidence
interval approach can be effectively used for variable selection
in penalized regression models. Third, we provide a series
of simulations to illustrate the validity and reliability of our
proposed methods across different data conditions (i.e., different
sample sizes and signal-to-noise ratios). Moreover, our study is
the first (to our knowledge) to examine individual differences
in ICA-derived neural connectivity metrics using penalized
regression.

We have two overarching goals in this work: (i) illustrate
the relative advantages of penalized regression (ridge, elastic
net, and the lasso) over OLS regression when analyzing fMRI
data, and (ii) compare the variable selection performance of our
proposed bootstrap QNT confidence interval approach to that
of the VIP. The remainder of this paper is organized as follows.
Section 4 provides background on OLS and penalized regression,
and also presents our proposed bootstrap QNT approach for
variable selection. Section 5 presents an application to real
fMRI data where the goal is to predict individual differences in
externalizing traits (e.g., impulsivity, substance use) from ICA-
derived connectivity networks. Section 6 illustrates how Monte
Carlo simulations can be used to compare the effectiveness of
different penalized regression approaches across a variety of
data conditions. Section 7 presents our conclusions and general
recommendations for applying penalized regression methods in
functional connectivity and other neuroimaging studies. We also
provide annotated R (R Core Team, 2016) code that can be
used to replicate and apply our analyses, and Supplementary
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Material (SM) that includes additional background information
on functional connectivity and externalizing.

4. STATISTICAL METHODOLOGY

4.1. OLS Regression
In its simplest form, an OLS regression model has the form

yi = β0 + β1xi1 + · · · + βpxip + ǫi (1)

where yi denotes the criterion (dependent variable) for the
i-th subject, xij denotes the j-th predictor (out of the set of
p predictors) for the i-th subject, β0 denotes the regression
intercept, βj denotes the regression coefficient for the j-th
predictor, and ǫi denotes the difference between the observed
and model implied criterion for the i-th subject. In a typical
least squares fitting procedure, the coefficients in Equation (1) are
estimated by minimizing the OLS criterion:

FOLS(β) =

n
∑

i=1



yi − β0 −

p
∑

j=1

βjxij





2

(2)

where β = (β0, β1, . . . , βp) and n denotes the number of
subjects.

OLS regression is a popular technique for identifying the ICA-
derived networks that predict behavior (Stevens et al., 2007; Kim
et al., 2009; Mennes et al., 2010; Eaton et al., 2012; Choi et al.,
2013). Unfortunately, OLS regression may be ill-suited for this
purpose. For instance, unless the ratio of subjects to variables is
large, OLS regression will generate models that over-fit the data,
such that the estimated regression coefficients may not generalize
to other datasets. In addition, such models will have artificially
inflated R2-values (James et al., 2013, p. 80). This is a particular
concern in neuroscience research where collecting neuroimaging
data is expensive and samples are often small (Button et al.,
2013). In regression analyses, over-fitting may occur whenever
the number of predictors approaches the number of subjects.
Moreover, regression models with large numbers of predictors
are difficult to interpret. Recognizing these points, researchers
often prefer parsimonious models that only retain variables with
substantial effects (Tibshirani, 1996).

To identify these important predictors, some researchers
test multiple smaller models. However, this practice is
methodologically unsound as it increases the chances of
committing Type I Errors, i.e., retaining coefficients that are
incorrectly deemed significantly different from zero (Simmons
et al., 2011). Moreover, in OLS regression, the p-values that flag
predictor significance are always conditional statistics in that
they depend on the current predictor set. Thus, the p-value for a
given predictor may change substantially after the inclusion or
exclusion of other predictors to an existing model. This issue is
particularly salient for models with highly correlated predictors
(Pedhazur, 1997). Related to this problem is the associated
problem of “bouncing betas” where OLS regression coefficients
are unstable when computed from highly correlated variables
(Darlington, 1968). This is likely to occur with fMRI data,

because high correlations within and between brain networks
are often present at rest and during task (Fox et al., 2005; Sporns,
2013).

4.2. Penalized Regression
We now briefly review the mechanics of penalized regression
and focus on three members of this statistical family: ridge
regression (Hoerl and Kennard, 1970), the lasso (Tibshirani,
1996), and the elastic net (Zou and Hastie, 2005). The three
penalized regression models that we describe in this paper can
be viewed as extensions of OLS regression. As described in this
section, these and other penalized regression models can often
overcome the aforementioned limitations of OLS. Specifically,
by adding a penalty to the OLS fit function in Equation (2),
these methods can: (i) decrease coefficient estimation error and
(ii) produce parsimonious and interpretable models from large
numbers of highly correlated predictors (Tibshirani, 1996; Zou
and Hastie, 2005). As such, penalized regression techniques
represent promising alternatives to OLS methods for analyzing
high dimensional data, including those used in functional
connectivity studies.

Ridge regression (Hoerl and Kennard, 1970) is an early
example of penalized regression that was developed to
overcome known limitations of OLS regression with highly
correlated predictors (Hawkins, 1975). In ridge regression,
model coefficients are estimated by adding a penalty function
to the OLS fit function. Specifically, ridge regression adds a
quadratic shrinkage penalty to the OLS criterion to control
the size of the regression coefficients. More formally, the ridge
regression discrepancy function can be written

Fridge(β) = FOLS(β)+ λ

p
∑

j=1

β2
j (3)

where FOLS(β) is defined in Equation (2), λ denotes a tuning
parameter that ranges from 0 to infinity, and

∑p
j=1 β2

j denotes

the quadratic shrinkage penalty, which is equal to the sum of the
squared regression coefficients. The expression in Equation (3)
shows that as λ approaches infinity, all coefficients are shrunk
toward zero (see James et al., 2013, p. 215). However, the
shrinkage rate is not equal across coefficients. Namely, larger
coefficients are shrunkmore than smaller coefficients (reflecting a
quadratic penalty). Moreover, though not immediately apparent
in Equation (3), it can be demonstrated that in ridge regression,
the underlying principal components with smaller variances are
shrunk closer to zero than those with higher variances (see
Hastie et al., 2009, p. 67). These small-variance directions are
believed to contribute most to mean-squared error, and the goal
of ridge regression is to bias the solution coefficient vector away
from directions that have small spread (see Frank and Friedman,
1993, p. 113). As such, ridge regression estimates are putatively
more stable than their associated OLS counterparts. However,
in general, ridge regression models are often not parsimonious
because the method rarely attenuates coefficients to zero.

The lasso (i.e., the least-absolute-shrinkage-and-selection-
operator Tibshirani, 1996) is a penalized regression approach
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that overcomes the aforementioned limitation of ridge regression
by allowing regression coefficients to be shrunk to zero. Thus,
in addition to generating robust regression coefficients with
attractive out of sample properties (i.e., lasso models hold up
well under cross validation), the lasso can be used as a variable
selection routine when searching for parsimonious models (see
James et al., 2013, p. 219). Lasso coefficients are estimated by
minimizing the OLS criterion plus a penalty function that equals
the sum of the absolute values of the regression coefficients. More
formally, the lasso discrepancy function can be written as

Flasso(β) = FOLS(β)+ λ

p
∑

j=1

|βj| (4)

where
∑p

j=1 |βj| denotes the sum of the absolute values of the

regression coefficients, and all other terms in Equation (4) are
as previously defined. In contrast to ridge regression, the lasso
shrinks all coefficients by a constant amount (Tibshirani, 1996).
Thus, large coefficients are retained in a model whereas smaller
coefficients are shrunk to zero and thus removed from the model.
Note that although each predictor in a lasso has the possibility
of being included in the final model, only n predictors (where
n denotes sample size) can be assigned a non-zero coefficient.
Consequently, in contrast to OLS regression, a lasso regression
can be estimated in data sets that contain more predictors than
observations. This feature has made the lasso a popular tool in
GWAS research (D’Angelo et al., 2009; Brown et al., 2011; Ayers
and Cordell, 2013) where the number of predictors can range in
the thousands. Later, we show how the lasso can also be profitably
used in data sets where n > p, and can produce better results than
OLS when n ≈ p.

The third penalized regression algorithm that we describe in
this paper is called the elastic net (Zou and Hastie, 2005). As
shown below, this model can be conceptualized as a combination
of ridge regression with the lasso. More formally, the elastic net
includes a composite penalty function that equals a weighted sum
of the ridge and lasso penalty functions (Friedman et al., 2010).
This composite penalty putatively allows the elastic net to enjoy
the methodological advantages of both ridge regression and the
lasso (Cho et al., 2010). The elastic net discrepancy function has
the form

Fenet(β) = FOLS(β)+ λPα(β) (5)

where

Pα(β) =
1

2
(1− α)

p
∑

j=1

β2
j + α

p
∑

j=1

|βj|. (6)

denotes the elastic net penalty (Zou and Hastie, 2005). Notice in
Equation (6) that, as mentioned earlier, the elastic net penalty
is a composite function that is composed of two component
penalty functions. The first penalty minimizes the weighted sum
of squared regression coefficients and thus equals the ridge
penalty, whereas the second component minimizes the weighted
sum of absolute regression coefficients and thus equals the lasso
penalty. The relative contribution of the two component penalties

is controlled by a tuning parameter, α, that ranges from 0 to
1. In effect, α controls the proportional contribution of the
ridge regression and lasso penalties. For example, when λ >

0 and α = 0, Equation (5) reduces to the ridge regression
discrepancy function in Equation (3). When λ > 0 and α =

1, Equation (5) reduces to the lasso discrepancy function in
Equation (4). Whenever λ > 0 and 0 < α < 1, Equation (5)
defines the elastic net.

The elastic net, like the lasso, can achieve coefficient shrinkage
and variable selection (Zou and Hastie, 2005). Unlike the lasso,
but similar to ridge regression, the elastic net can retain more
than n variables in data sets in which p > n. Moreover, the
elastic net has a unique “grouping effect” (Zou and Hastie, 2005)
property that is relevant when analyzing data sets with subsets
of highly correlated variables. Whereas, the lasso in these cases
will arbitrarily select one variable from a cluster of correlated
variables, the elastic net assigns all variables within a correlated
subset a common coefficient. Thus, when using the elastic net,
highly correlated variables are retained or discarded as a set in
the final model. This singular characteristic of the elastic net
is particularly salient for fMRI data given the potential high
collinearity between brain networks. In summary, the elastic
net is a convenient method for finding sparse and interpretable
regression models in data sets with large numbers of predictors
and possibly smaller numbers of observations. Data sets with
these characteristics are common in neuroscience research.

4.3. Tuning Parameter and Variable
Selection
All three penalized regression methods that were introduced
in the previous sections include tuning parameters to calibrate
Pα(β). We used the glmnet package (Friedman et al., 2010)
in the R programming language to implement the elastic net.
This package selects the optimal value of λ using k-fold cross-
validation (see James et al., 2013, p. 254). In k-fold cross-
validation, a data set is randomly parsed into k subsets or folds.
Typically, each fold contains an equal sized subset of the data.
Using these subsets, k − 1 folds are combined into a training set
and the remaining fold serves as a test (or holdout) sample. A
model is fit to the training data and then applied to the holdout
sample to calculate a cross-validated mean-squared error (CV-
MSE). This process is repeated by systematically creating training
sets that exclude a single member of the original folds. The
glmnet package implements this procedure by evaluating each
term in a λ sequence such that the lowest λ value generates a
regression model that includes all predictors, and the highest λ

value generates an intercept only regression model that excludes
all predictors. Unfortunately, the glmnet package does not
include a function for locating the optimal value of α. Thus, at
present, researchers must produce their own code for locating
optimal α values. Many researchers tune α and λ simultaneously
using cross-validation (Cho et al., 2009, 2010; Li and Li, 2010;
Bunea et al., 2011; Kohannim et al., 2012). Other researchers
use preselected α values and then estimate λ by cross-validation
(Hautamäki et al., 2011; Shen et al., 2011; Li et al., 2013). In the
analyses described below, we employed the latter approach.
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Once tuning parameters have been selected, a logical next step
is to identify regression coefficients that are significantly different
from zero. Unfortunately, there are no established methods for
obtaining accurate p-values and confidence intervals for elastic
net and lasso regression coefficients (although see Lockhart et al.,
2014, for a novel method for calculating asymptotically valid p-
values for the lasso). Fortunately, by using computer intensive
methods (e.g., the bootstrap or jackknife), researchers are able
to evaluate the significance of penalized regression coefficients
via sample splitting (Meinshausen et al., 2009; Wasserman and
Roeder, 2009) or resampling methods (D’Angelo et al., 2009;
Bunea et al., 2011; Tibshirani, 2011). However, available research
has not reached a consensus on how to define standard errors
or confidence intervals for lasso estimates (see Tibshirani, 1996;
Osborne et al., 2000; Kyung et al., 2010; Tibshirani, 2011). One
source of this debate is that several techniques for calculating
lasso standard errors assign standard errors of zero to excluded
predictors (see Tibshirani, 1996; Osborne et al., 2000; Chatterjee
and Lahiri, 2011). Nonparametric bootstrapping is advantageous
in this regard, as even an excluded predictor can have a non-
zero standard error if said predictor has a non-zero estimated
coefficient in at least one bootstrap sample (Tibshirani, 2011).

4.4. Enhancing Penalized Regression with
the Bootstrap
We begin by reviewing the bootstrap enhanced (BE) procedure
proposed by Bunea et al.(2011, p.1522). The underlying logic of
this procedure can be summarized as follows:

1. [Model fitting] For each value of λ and α, complete the
following steps:

a) [Elastic net] Fit elastic net on all standardized predictors.
b) [Bias correction] Fit OLS model using predictors selected

by elastic net.

2. [Parameter tuning] Apply k-fold CV to find λ and/or α that
minimizes CV-MSE.

3. [Bootstrap] Apply Steps 1–2 to each of B bootstrap samples.

The bias-correction (Step 1b) is meant to correct the bias
(shrinkage) induced by the penalized regression fitting in Step 1a.
It should be noted that this bias-correction step is not necessary
to select tuning parameters in penalized regression models. For
example, this bias-correction step is not implemented in popular
software such as the glmnet package mentioned previously
(Friedman et al., 2010). Moreover, due to the bias vs. variance
trade-off, it is unclear whether bias-correction at this particular
juncture produces better coefficient estimates from a mean-
squared error perspective. Further research is therefore needed to
understand the properties of bias-corrected penalized regression
coefficients. Because it is unclear whether the added computation
involved with the bias-correction is worthwhile, we do not
implement the bias-correction step for variable selection in this
paper.

Applying the BEmethod produces a bootstrap distribution for
each regression coefficient, βj. The information in this bootstrap
distribution can be used to assess the influence of the predictor

βj in the model. Colloquially, if the bootstrap distribution for
βj shows a “large” difference from zero, we can conclude that
the j-th predictor may be important for the model. How to
quantify a “large” difference from zero is one of the topics
that we explore in this paper. One possible approach is Bunea
et al.’s (2011) VIP, which quantifies the importance of the j-
th predictor as the proportion of times (out of the B bootstrap
replicates) the j-th predictor receives a non-zero coefficient
estimate. With a Bayesian interpretation (i.e., Laplace prior on
βj), the VIP can be understood as the posterior probability of
including the j-th predictor in the model (see Bunea et al., 2011).
However, for real neuroimaging data, there is no theoretical
reason that this Laplace prior should be preferred. Furthermore,
it should be noted that by dichotomizing (zero vs. non-zero) the
estimated predictor coefficients, the VIP does not take advantage
of coefficient magnitude information that could be useful for
variable selection.

To incorporate magnitude information into the variable
selection process, we propose using the quantiles of the bootstrap
distribution of βj to determine the significance of the j-th
predictor. Given a significance threshold 1 − α∗, the j-th
predictor is selected with threshold 1 − α∗ if the 100(1 −

α∗)% bootstrap confidence interval for βj does not contain zero.
The 100(1 − α∗)% bootstrap confidence interval is given by
[Qj,α∗/2;Qj,1−α∗/2], where Qj,α denotes the quantile value such

that α = 1
B

∑B
b=1 1{β̂jb ≤ Qj,α}

, where 1{·} is an indicator function

that equals 1 if the argument within braces is true and equals 0
otherwise, and β̂jb denotes the estimate of βj in the b-th bootstrap
replicate. Compared to the VIP, our proposed quantile approach
produces a more stringent variable selection rule, as evidenced by
the following theorem.

Theorem 1. For the same significance threshold 1 − α∗, the
number of predictors declared significant by VIP selection will
be greater than or equal to the number of predictors declared
significant by quantile (QNT) selection.

To prove Theorem 1, we need to show that (i) if βj is selected
by QNT, then βj must also be selected by VIP, and (ii) if βj

is not selected by VIP, then βj must not be selected by QNT.
Proof of part (i) is straightforward: if βj is selected by QNT
with threshold 1− α∗, then (by definition) zero is not contained
within [Qj,α∗/2;Qj,1−α∗/2], which implies that VIPj > 1 − α∗.
To prove part (ii), we offer a simple proof by contradiction.
Suppose that the VIP does not select βj as significant (i.e., VIPj <

1 − α∗), but QNT selects βj as significant (i.e., zero is not in
[Qj,α∗/2;Qj,1−α∗/2]). Clearly, this creates a contradiction because
VIPj < 1− α∗ implies that at least 100α∗% of the coefficients are
zero across bootstrap replications, which implies that zero must
be within [Qj,α∗/2;Qj,1−α∗/2].

After applying the VIP and/or QNT approach to select
predictors, it may be desirable to obtain final coefficient estimates
corresponding to the selected predictors. Note that the penalized
coefficient estimates from the full model could be considered
undesirable for two reasons (i) the penalization adds bias to the
solution, and (ii) these parameter estimates are conditioned on
the other (insignificant) predictors in the model. One simple
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approach to obtain final coefficient estimates is bias correction,
i.e., fit a restricted OLS model using the selected predictors. This
sort of approach has been applied by Efron et al. (2004) to obtain
bias-corrected coefficients after using the Least Angle Regression
algorithm to select predictors. Note that Bunea et al. (2011)
propose this sort of bias-correction for the tuning parameter
selection, which is different from our use of the bias-correction.
In contrast, we propose the use of bias-correction to obtain final
coefficient estimates corresponding to the predictors that are
determined relevant for the model.

5. APPLICATION TO REAL FMRI DATA

5.1. Data
To demonstrate the utility of penalized regression for functional
connectivity analyses, we used a moderately large neuroimaging
dataset (n = 122) with p = 27 spatial components determined
via ICA1. Specifically, we used a subject-level metric derived
from these components (see Section 5.2 for details on the
metric computation). Although the ICA-generated components
were spatially uncorrelated at the group level, the 27 subject-
level metrics calculated based on these components were highly
correlated across subjects, with correlations ranging from 0.14
to 0.77. The criterion for our regression analyses was the
Externalizing Spectrum Inventory (Krueger et al., 2007), which is
a composite of externalizing traits and behaviors (e.g., impulsivity
and prior thefts) that have been identified as important markers
of psychopathology (Krueger et al., 2002). See the Supplementary
Material for background information on the neural basis of
externalizing.

The n = 122 male participants were recruited from the
community via the CraigsList.org website, and were between
the ages of 20 and 40 (mean age = 25.7 years). The University
of Minnesota institutional review board approved the study
and participants provided written informed consent. Subjects
were excluded for neurological and psychiatric disorders,
regular psychotropic drug use, MRI contraindications (e.g.,
ferromagnetic implants, non-removable piercings, pacemakers),
and excessive movement (mean absolute displacement above
1.5 mm, or any absolute displacement above 2.75mm).
Neuroimaging data were acquired on a 3T Siemens scanner at
the University of Minnesota’s Center for Magnetic Resonance
Research, and resting state scans were 5 min long2. During
the scan, researchers assured that participants remained awake
by having them push a button each time a fixation cross

1We also note that the discussed penalized regression methods can be equivalently

applied to other subtypes of neuroimaging data, such as voxel-wise activity or

between-network connectivity metrics. However, a voxel-wise approach may not

be optimal, as, ideally, one would like each of the variables in the pool to have

somemeaningful functional distinction. Voxels do notmeet that criterion, whereas

components do because they reflect networks that map onto cognitive/emotional

processes and behaviors, e.g., Laird et al. (2011). Thus, from a theoretical

perspective, it is valuable to first reduce neuroimaging data to functionally

homogeneous components before examining brain-behavior associations. We

refer the reader to Section 7.2 for a discussion of alternative applications of the

proposed penalized regression approach.
2We used the following scanning parameters: gradient-echo echo-planar imaging

of 150 volumes; repetition time (TR) = 2 s; echo time (TE) = 28ms; flip

angle= 80◦; voxel size= 3.5× 3.5× 3.5 mm.

changed from gray to white or vice versa (occurred 5 times).
High-resolution T1-weighted structural scans were collected for
registration.

Prior to performing the penalized regression, we processed
the fMRI data using the following procedures. Data were
pre-processed using FSL’s MELODIC Toolkit3. Pre-processing
procedures included registration to T1-weighted structural
image, brain extraction, grand mean intensity normalization of
the 4D dataset, high pass temporal filtering, motion correction,
and motion regression as the final step. Resting state data
were then decomposed using the spatial ICA algorithm in the
MELODIC toolkit, which assumes spatial independence between
components (Calhoun et al., 2001). In the Supplementary
Material we detail our specific procedures for employing
ICA with resting fMRI data. Artifacts were visually identified
following procedures outlined by Kelly et al. (2010); this
step resulted in 27 non-artifactual ICNs. Non-artifactual ICNs
covered a range of neural functions, which included: vision,
audition, motor, and visuospatial processing as identified by
Laird et al. (2011), see Figure 1.

5.2. Analyses
Dual-regression was used to derive subject specific maps and
time series for each individual based on the group-level maps
derived from the ICA4 (Beckmann et al., 2009; Zuo et al., 2010;
Poppe et al., 2013; Wisner et al., 2013a; Moodie et al., 2014). First,
the complete set of group-level spatial maps was used as spatial
regressors for each subject’s 4D dataset. This process yielded a
set of subject-specific time series, with one per group-level spatial
map for each subject. We elected to apply the group-level spatial
maps derived from the present sample in the dual regression,
given our relatively large sample size when compared with other
publicly available maps. Second, subject-specific time series were
used as temporal regressors for the respective subjects’ 4D dataset
to derive a set of subject-specific spatial maps. The value of each
voxel in a particular subject’s spatial map reflected how well the
time series of that voxel corresponded to the overall time series of
the component, for the respective subject.

Network coherence (within-network connectivity) was
calculated for each subject (for all ICNs) using the subject-level
spatial maps from the dual-regression procedure (see Figure 2).
First, group-level components were normalized by the maximum
value and then thresholded at values of zmax > 0.30 (Poppe
et al., 2013). Second, the thresholded group-level component
maps were binarized and subsequently applied as masks to
the respective subject-level spatial maps. Third, the average
of the coherence values for all voxels within the respective
group-level mask for each component was computed (Wisner
et al., 2013b). This process was repeated for all subjects to yield

3http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MELODIC
4Although our specific example focuses on how individuals differ in terms of

functionality within group-defined networks, researchersmay alternatively explore

relations between individual differences in network topography and external

behaviors/traits via penalized regression. Single-subject ICA has the benefit of

accommodating unique spatial and temporal features, but has disadvantages in

that the resulting components can be noisy and are not necessarily unmixed

equivalently for every subject (Erhardt et al., 2011). Consequently, in this paper

we use the group-defined networks to ensure comparability across subjects.
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FIGURE 1 | Examples of two intrinsic connectivity networks derived using independent component analysis with functional neuroimaging data: (A)

medial vision network, which contains occipital cortex. (B) Posterior portion of the “default mode network,” which contains areas such as the posterior cingulate

cortex, precuneus, and bilateral angular gyrus.

average coherence values for the 27 non-artifactual ICNs for
all subjects. For each subject, these values represent the overall
voxel coherence within each network; larger values reflect greater
coherence over time. Specifically, these metrics represent ICA
network coherence, which we distinguish from the spectral
coherence described in the signal processing literature.

The purpose of this example is to compare variable
selection results using OLS regression vs. BE penalized
regression techniques when analyzing real neuroimaging data.
We compared five different versions of the elastic net by fixing α

at five values α ∈ {0, 0.25, 0.5, 0.75, 1}. For each of the five elastic
net models, we used the cv.glmnet function (Friedman et al.,
2010) to perform 5-fold cross-validation to select the optimal λ.
To make the OLS results comparable to the penalized regression
results, we applied the bootstrap procedure to the OLS results as
well. This means that for each of the B = 5000 bootstrap samples,
we applied six different methods: OLS and five elastic net models.
We compared the variable selection results using both the VIP
and QNTmethods with various significance thresholds: 1−α∗ ∈

{0.5, 0.55, . . . , 0.9, 0.95}. We refer readers to the R code in the
SOM for further details on our analysis procedure.

5.3. Results
In Figure 3 we plot the variable selection results for the real
data using both the VIP and QNT approaches. For each
subplot of Figure 3, a gray box is plotted if βj (abscissa)

is declared significant using the corresponding significance
threshold (ordinate), where the threshold is 1 − α∗ for both
variable selection methods. Note that βj is declared significant if
VIPj > 1 − α∗ (for VIP selection) or if 0 6∈ [Qj,α∗/2;Qj,1−α∗/2]
(for QNT selection). As a first point, note that the VIP is not
useful for the OLS (λ = 0) and ridge (α = 0) solutions, given
that OLS and ridge will not typically zero-out any coefficients. In
contrast, the QNT approach can be meaningfully applied to the
OLS and ridge results, as well as the other (non-ridge) elastic net
results. As a second point, note that the QNT approach always
produced a sparser solution than the VIP approach for the same
significance level, which is expected given the implications of
Theorem 1.

When we applied the VIP with the conservative 50%
threshold, the various models selected anywhere from 25 to 27
predictors as significant (out of 27 total predictors). The exact
number of predictors selected varied slightly as a function of
the elastic net, α tuning parameter. At more stringent thresholds
(e.g., 70–90%), the VIP still selected upwards of 15 predictors as
significant. The most parsimonious VIP-suggested model (at a
95% threshold) contained four predictors: ICN1 (medial vision),
ICN7 (posterior insula and Heschl’s Gyrus), ICN11 (anterior
insula, ventral striatum, and anterior cingulate cortex), and
ICN14 (anterior insula, and orbitofrontal cortex). In contrast, the
most parsimonious QNT-suggested model (at a 95% threshold)
contained only ICN7 and ICN14.
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FIGURE 2 | Illustration of network coherence calculation using ICA with dual-regression.

FIGURE 3 | Results from real data analysis using the VIP approach (top) and the QNT approach (bottom). Each column represents a different regression

model: OLS (λ = 0), ridge regression (α = 0), elastic net (α = 0.25, 0.5,0.75), and the lasso (α = 1). Vertical gray bars indicate whether a specific predictor, i.e.,

network derived using ICA, was selected at a given significance threshold.

In Table 1 we display the coefficient estimates for the fitted
regression models. Note that OLS-All refers to the non-BE OLS
solution, where coefficient significance was determined using
normal theory asymptotic results. Also, notice that the three
sparsest BE penalized regression models (α = 0.50, 0.75, 1)

have identical coefficient estimates, thus we present the results
for these models in a single column of the table. For these
three α levels, the same two predictors (ICNs 7 and 14) were
included in the final OLS model that we used to obtain bias-
corrected estimates. Table 1 also contains information regarding
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TABLE 1 | Coefficient estimates for OLS, ridge regression, elastic net, and the lasso.

Predictor OLS-All OLS (λ = 0) Ridge (α = 0) E-Net (α = 0.25) E-Net (α ≥ 0.5)

ICN1: Medial Vision −0.47 −0.16 −0.26 −0.14 0.00

ICN2: R Fronto-Parietal −0.19 0.00 0.00 0.00 0.00

ICN3: Bilateral Supramarginal Gyrus −0.15 0.00 0.00 0.00 0.00

ICN4: L Postcentral Gyrus 0.05 0.00 0.00 0.00 0.00

ICN5: Bilateral IFG 0.12 0.00 0.00 0.00 0.00

ICN6: Lateral Occipital + Precuneus + PCC 0.09 0.00 0.00 0.00 0.00

ICN7: Insula + Heschl’s Gyrus 0.39 0.37 0.33 0.37 0.32

ICN8: Bilateral Angular Gyrus −0.02 0.00 0.00 0.00 0.00

ICN9: Putamen + Amygdala −0.17 0.00 0.00 0.00 0.00

ICN10: Bilateral Superior Temporal Gyrus −0.02 0.00 0.00 0.00 0.00

ICN11: Insula + Ventral Striatum + ACC −0.44 −0.38 −0.35 −0.29 0.00

ICN12: Posterior Vision 0.18 0.00 0.00 0.00 0.00

ICN13: Parietal/Occipital Cortices 0.32 0.41 0.37 0.41 0.00

ICN14: Bilateral Insula and OFC −0.49 −0.45 −0.30 −0.29 −0.38

ICN15: Bilateral Frontal Pole −0.17 0.00 0.00 0.00 0.00

ICN16: Supplementary Motor 0.15 0.00 0.00 0.00 0.00

ICN17: Primary Motor 0.19 0.00 0.00 0.00 0.00

ICN18: Motor −0.07 0.00 0.00 0.00 0.00

ICN19: Frontal Medial Cortex + ACC 0.31 0.31 0.00 0.00 0.00

ICN20: Precuneus + PCC −0.03 0.00 0.00 0.00 0.00

ICN21: Occipital Pole 0.15 0.00 0.00 0.00 0.00

ICN22: R Postcentral Gyrus 0.26 0.00 0.33 0.00 0.00

ICN23: Cerebellum 0.04 0.00 0.00 0.00 0.00

ICN24: Subcallosal Cortex + OFC 0.19 0.00 0.00 0.00 0.00

ICN25: Inferior Lateral Occipital 0.07 0.00 0.00 0.00 0.00

ICN26: Precuneus −0.09 0.00 0.00 0.00 0.00

ICN27: Hippocampus + Amygdala + TP −0.01 0.00 0.00 0.00 0.00

R2 (Error Standard Deviation) 0.46 (0.83) 0.27 (0.88) 0.29 (0.86) 0.23 (0.90) 0.12 (0.95)

Coefficients that are significant at a 95% threshold are indicated with boldfaced font. IFG, Inferior Frontal Gyrus; ACC, Anterior Cingulate Cortex; OFC, Orbitofrontal Cortex; PCC,

Posterior Cingulate Cortex; TP, Temporal Pole.

model strength. In particular, our findings indicate that the
more parsimoniousmodels had smaller R2-values. Consequently,
compared to the sparser penalized solutions, the OLS solution
was overly-optimistic about the model’s ability to explain
variation in externalizing scores. This effect is more dramatic
if we consider the full OLS model with 27 predictors, which
produced an R2 of 0.46 and an Adjusted-R2 of 0.31. Interestingly,
we also found that the CV-MSE was almost identical for the
5 elastic net variations (see Figure S1). We investigated these
model fit issues (and other issues) in the following simulation
study.

6. APPLICATION TO SIMULATED FMRI
DATA

6.1. Design
We designed a simulation study to evaluate and compare the
effectiveness of OLS and various penalized regression procedures
when analyzing simulated neuroimaging data. To ensure that our
simulation results were relevant to our problem, our simulation

design was motivated by our real data results. In the real data
example, we found that only ICNs 7 and 14 were selected as
significant using the lasso with a stringent QNT significance
threshold of 95%. Consequently, we designed a simulation study
where ICN 7 and 14 were the only active predictors, and the
other 25 predictors were inactive (i.e., had coefficients of zero).
The purpose of the simulation was to determine how often each
predictor (of the 27 predictors) was “selected as significant” using
a variety of sample sizes (n), error standard deviations (σ ), and
selection methods (e.g., VIP vs. QNT).

In the simulation, the two active coefficients were set at β7 =

0.3 and β14 = −0.4; these values were inspired by the least-
squares estimates from the OLS model that included only ICNs
7 and 14 as predictors: β̂7 = 0.32 and β̂14 = −0.38 (see
Table 1). We manipulated two simulation conditions: (i) sample
size (4 levels; n ∈ {30, 60, 90, 122}), and (ii) error standard
deviation (3 levels; σ ∈ {0.5, 0.7, 1}). Treating the n = 122
subjects as the population, the three σ values correspond to R2 ∈
{0.33, 0.2, 0.11}, respectively. These n and σ values were selected
to cover the range of values encountered in typical neuroimaging
studies. In our real data example with only ICNs 7 and 14
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included in the model, the estimated error standard deviation is
about σ̂ = 0.95.

Our data generation procedure was as follows. To facilitate
comparisons between the simulation and the real data results, we
used the designmatrixX, from the real data to generate simulated
data. For each sample size n, we randomly sampled (without
replacement) n subjects from our sample of 122 observed
response vectors, and used the corresponding n rows of X as the
true predictors. The true response variable was defined as

yi = 0.3xi7 − 0.4xi14 + ǫi

where ǫi
iid
∼ N(0, σ 2) is independently, randomly sampled from

a normal distribution with mean zero and variance σ 2. We
repeated this data-generation process 100 times for each of the
12 (4 n× 3 σ ) cells of the simulation design.

6.2. Analyses
For each simulation replication (or generated dataset), we
compared six different regression methods: (i) OLS regression,
(ii) ridge regression, (iii)–(v) elastic net with α = 0.25, 0.5, 0.75,
and (vi) lasso. For each method, we used B = 5000 bootstrap
samples to determine the bootstrap distribution of each of the 27
coefficients. Given the bootstrap distributions, we used the VIP
(Bunea et al., 2011) and the QNT to determine the significance
of each predictor at ten thresholds of interest, i.e., 1 − α∗ ∈

{0.5, 0.55, . . . , 0.9, 0.95}. Note that the VIP approach can only be
meaningfully applied to methods (iii) through (vi), whereas the
QNT approach is applicable to all methods.

6.3. Results
6.3.1. Overview
We first present the variable selection results for n = 122 (see
Figure 4, top), given that this simulation cell (n = 122, σ = 1) is
most comparable to our real data. Figure 4 can be interpreted in a
similar fashion to Figure 3: for each σ level, each subplot displays
the variable selection results for each predictor (abscissa) at each
threshold (ordinate). The novel aspect of Figure 4 is that colors
are used to illustrate the proportion of times that a predictor was
deemed significant at a given threshold, where purple indicates
a 0% selection rate across simulation replications, and red
indicates a 100% selection rate across simulation replications.
Consequently, the results in Figure 4 elucidate the Type I (False
Positive) and Type II (False Negative) error rates for the different
selection rules. In this case a Type I error entails the selection of
a non-active predictor (i.e., not ICN 7 or 14) at a given threshold,
which is depicted as a cell having a non-purple fill.

Ignoring the VIP-OLS and VIP-ridge results, it is apparent
that the active predictors (ICNs 7 and 14) are selected most
frequently by both the VIP and QNT approaches, regardless of
the chosen tuning parameters. Furthermore, for both the VIP
and QNT approaches, we see the selection probabilities decrease
as the α tuning parameter increases toward the lasso solution.
Again, this result is expected, because the lasso is known to
produce sparser models than ridge regression. However, it is
interesting to note that, for these data, we found little difference
between the CV-MSE for different choices of the α tuning

parameter. For most examined sample sizes, the median CV-
MSE was nearly identical for all choices of α (see Figure S2); the
only noteworthy difference is that the ridge solution produced a
noticeably larger CV-MSE with only n = 30 subjects.

6.3.2. OLS vs. Penalized Regression Results
Our first overarching goal was to compare OLS vs. penalized
regression. To address this aim, we focus on the QNT results,
given that the VIP results are uninformative for OLS and
ridge. We found that when using OLS regression, the active
predictors (ICNs 7 and 14) were selected most frequently across
the different thresholds (see Figure 4). At small thresholds (e.g.,
using confidence intervals with 50% theoretical coverage rates),
the OLS and ridge results had Type I Error rates of about 0.6
(indicated by yellow and green cells in the bottom rows), whereas
the other QNT results had Type I Error rates of 0.3 or less
(indicated by dark blue cells in the bottom rows). Even using
the most stringent threshold of 95%, the OLS and ridge results
had Type I Error rates exceeding 0.1 (indicated by blue and dark
purple cells in the top rows). In contrast, when using a 95%
threshold with QNT selection, the non-ridge elastic net results
had Type I Error rates less than the nominal 0.05 level (indicated
by purple cells in the top rows). These results reveal that OLS and
ridge tended to produce more False Positives than did the other
elastic net methods.

We also examined model fit for OLS vs. penalized regression
using the simulated data (see Figures S2, S3). The boxplots
in Figure S3 display the 100 R2-values (from 100 simulation
replications) that were obtained by applying the bias-correction
procedure (see Section 4.4) to the variables selected at a 95%
QNT threshold. For comparison, we also plot the R2 results
obtained by applying the non-BEOLS solution (OLS-All).Within
each subplot, the dashed line displays the true R2-value treating
the n = 122 subjects as the population of interest. Note that
Figure S3 illustrates the over-fitting tendency of the non-BE
OLS solution. In particular, the OLS-All solution tended to over-
estimate the true R2, particularly at smaller sample sizes such as
n = 30. Interestingly, Figure S3 reveals that ridge regression may
be useful for obtaining accurate R2 estimates in small samples;
whereas, the other BE approaches tend to underestimate R2

in small sample sizes. However, the ridge solution has larger
CV-MSE values for smaller samples, see Figure S2.

6.3.3. VIP vs. QNT Selection
We next compare the VIP and QNT selection results that are
summarized in Figure 4. As a first point, note that in the OLS and
ridge solutions, the VIP selected all predictors at all thresholds.
As previously mentioned, the VIP can only be meaningfully
applied in elastic net situations where α > 0, so this result
is not surprising. In contrast, the QNT approach produced
relatively consistent results across the six regression methods.
Moreover, the VIP approach selected larger models than QNT
in every simulation condition (again, this was expected given
Theorem 1). Note that with n = 122 subjects and a VIP selection
threshold of 50%, using the VIP for predictor selection resulted
in Type I Error rates that ranged from 0.2 to 1.0 (indicated by
red, orange, yellow, green, and blue cells in the bottom rows),
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FIGURE 4 | Results from simulated data analyses with n = 122 subjects using the VIP approach (top) and the QNT approach (bottom). The top two rows

display results for a signal-to-noise ratio (SNR) of 1, the middle two rows for a SNR of 0.7, and the bottom two rows for a SNR of 0.5. Each column represents a

different regression model: OLS (λ = 0), ridge regression (α = 0), elastic net (α = 0.25,0.5, 0.75), and the lasso (α = 1). Colored bars indicate how often a specific

predictor, i.e., network derived using ICA, was selected at a given significance threshold; the color scale represents the percentage of times that a predictor was

selected across 100 simulation replications.

regardless of the model signal-to noise ratios (i.e., error standard
deviations). As expected, we observed larger Type I Error rates
as the elastic tuning parameter α approached zero. Increasing
the VIP threshold reduced the Type I Error rates substantially.
However, even with α = 1 and a relatively stringent threshold of
70–80%, VIP selection produced False Positive results for many
of the inactive predictors.

In contrast to the VIP approach, Figure 4 reveals that the
QNT approach produced smaller Type I Error rates. For the
non-ridge elastic net solutions (α > 0) with n = 122 subjects,
the largest observed Type I Error rate (across all predictors
and thresholds) was 0.3 when using the QNT. Furthermore, as
both the elastic net tuning parameter α and the significance
threshold 1− α∗ were increased, the Type I Error rate decreased
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for the inactive predictors. However, this decrease in Type
I Error rate came at the cost of a decrease in power (i.e.,
increase in Type II Error rate). This is evident from Figure 4,
given that the QNT approach tended to have slightly lower
True Positive rates for the two active coefficients (compared
to VIP). However, as Figure 4 reveals, when the signal-to-
noise ratio increased (i.e., as σ decreased), QNT had (i) similar
power as the VIP and (ii) substantially smaller Type I Error
rates.

6.3.4. Sample Size and Power
To illustrate the influence of sample size on our Type I and
Type II Error rates, we plot the variable selection results for
the n = 90, 60, 30 in Figures S4–S6, respectively. Comparing
Figure 4 and Figures S4–S6, it is apparent that reducing the
sample size (i) slightly decreased our Type I error rates, and
(ii) severely increased our Type II error rates. With the realistic
error standard deviation of σ = 1 and data from only n =

60 subjects, our power to detect true predictors was 0.11 or
less for both VIP and QNT using the stringent threshold of
95% (indicated by blue cells for the active predictors in the
top rows). Consequently, for smaller samples, researchers may
need to set 1 − α∗ larger. However, Figures S4–S6 reveal
that as σ decreases, both the VIP and QNT selection results
improve substantially (indicated by brighter colored cells for
the active predictors in the top rows). Finally, comparing VIP
vs. QNT selection, we see that VIP selection results in larger
Type I error rates and smaller Type II error rates for the same
selection threshold; this finding was expected, given the result in
Theorem 1.

7. CONCLUSIONS

7.1. Summary of Findings
As psychology and neuroscience research continue to evolve,
multivariate methods for analyzing high-dimensional data
are becoming more accessible. Methods such as ICA enable
researchers to characterize behavioral mechanisms across the
whole brain by decomposing the neural signal from millions of
voxels into a smaller number of components with interpretable
functions (Beckmann, 2012; Duff et al., 2012). However,
the use of traditional regression approaches in this context
is problematic when the number of networks begins to
approach the number of subjects. Even with adequate statistical
power, estimated OLS coefficients from traditional regression
are unstable when substantial inter-predictor collinearity is
present. Issues of high collinearity are especially concerning
for fMRI connectivity analyses (Sporns, 2013) where, due to
the high cost of data collection, sample sizes are frequently
modest and predictors are highly correlated. In this article, we
describe three penalized regression models—ridge regression,
the elastic net, and the lasso—that are particularly well
suited for the analysis of fMRI data as these methods
do not suffer from the aforementioned limitations of OLS
regression.

Our first overarching goal in this paper was to compare
the performance of penalized regression methods with OLS

regression in the context of correlated fMRI data. To accomplish
this goal, we demonstrated procedures using both real and
simulated neuroimaging data. We found that both the elastic
net and lasso selected two of the three networks containing the
greatest number of insula voxels. The OLS and ridge regression
models retained the most predictors, whereas the elastic net
and lasso models retained the fewest predictors. Moreover, our
simulation results indicated that the elastic net and lasso had
lower False Positive Rates (i.e., Type I Errors) when compared
with OLS and ridge regression. Surprisingly, we did not observe
differences in CV-MSE across the elastic net variations. Although
the three penalized regression techniques produced comparable
results in our example, this high degree of method comparability
is not guaranteed for all neuroimaging data. A Monte Carlo
procedure such as that suggested in Section 6 can be applied
to determine which penalized regression model performs under
different data conditions.

Our second overarching goal was to compare the performance
of our proposed bootstrapped QNT confidence interval approach
to Bunea et al.’s (2011) VIP approach. To accomplish this goal, we
presented new theoretical results connecting the VIP and QNT
selection rules, and we thoroughly compared the approaches
using both real and simulated neuroimaging data.With respect to
our real data findings, the QNT approach produced sparse results
(i.e., few selected predictors) across all models. Additionally,
from a practical standpoint, we found it problematic to detect
an optimal VIP threshold as many predictors were retained at
70–90% cutoff values. Our simulation study similarly indicated
that the QNT approach yielded more conservative results than
the VIP, as indicated by lower False Positive rates. This result is
especially salient in functional neuroimaging research, which is
an area that may be highly susceptible to False Positives (Carp,
2012).

Finally, the real data analyses reveal that insula network
coherence predicts individual differences in externalizing
tendencies. These findings supplement past research, which has
found that insula network integrity (e.g., anterior insula-anterior
cingulate cortex) may underlie a range of psychiatric disorders
(see Naqvi and Bechara, 2009; Wisner et al., 2013b; Carroll et al.,
2015). For instance, a recent meta-analysis (using the revised
activation likelihood estimation algorithm) found reduced gray
matter loss in the anterior insula and dorsal anterior cingulate
across six diagnostic groups, e.g., schizophrenia, addiction,
and anxiety (Goodkind et al., 2015). Our findings therefore
support research that has linked insula function and morphology
with impulse-related disorders, such as addiction. Moreover,
because we utilized a community control sample, we highlight
the presence of insula-externalizing relationships even in the
absence of a clinical diagnosis.

7.2. Alternative Applications
In coming years, multivariate data-driven techniques for data
reduction, model generation, and cross-validation will become
increasingly valuable as researchers continue to investigate
clinically meaningful differences in large-scale brain networks.
As such, the methods demonstrated here apply to other
types of neuroimaging studies, beyond our investigation of
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individual differences in ICA-derived networks. For instance,
penalized regression may be valuable for analyzing output
obtained from a graph-theoretical decomposition, where
researchers face similar challenges of modeling numerous
brain-derived metrics, e.g., hundreds of between network
variables (Bullmore and Sporns, 2009). Comparable situations
can also arise in multi-seed connectivity analyses, particularly
if a researcher is interested in pairwise connections between
vast numbers of brain regions (see Camchong et al., 2011).
This alternative application is particularly salient given that
between-network connectivity is pertinent for evaluating
brain health, such as age-related changes in functional
connectivity and psychopathology (Baker et al., 2014; Grady
et al., 2016).

Furthermore, the applicability of penalized regression in
neuroimaging research is not restricted to individual differences
analyses. For example, similar couplings of multivariate methods
are useful for researchers examining within-subject variables,
such as the relation between ICA-derived networks and
behavioral responses or task-related hemodynamic models
(Calhoun et al., 2012). Researchers may also be interested in
characterizing group differences via temporal or spatial network
information (Jafri et al., 2008; Ma et al., 2014); this latter aim
has become a recent focus in the schizophrenia and bipolar
research literatures (Calhoun and Adali, 2012; Calhoun et al.,
2014).

Lastly, we want to emphasize that penalized regression can
also be utilized when the variables of interest are voxels, as
opposed to brain networks or regions of interest; however,
we remind the reader of the motivation to use a set of
functionally homogeneous predictors (see Section 5.1). Note
that the use of voxels as predictors could pose a problem
for the lasso, which tends to arbitrarily select one variable
(voxel) out of a group of correlated variables (voxels), see
Section 4.2. For voxel-wise analyses, we recommend applying
either the elastic net (Zou and Hastie, 2005) or the group lasso
(Yuan and Lin, 2006) to encourage functionally homogeneous
voxels to be either selected or excluded from the model as a
group.

7.3. Limitations
Wenowmention the limitations of our proposed QNT approach.
Our simulation results indicate that the QNTmethod was slightly
less powerful than the VIP method for the same significance
threshold. More specifically, the VIP demonstrated a higher hit
rate for our two active predictors as sample size decreased, but
with a concomitant higher False Positive rate. This effect was
more pronounced for smaller sample sizes, e.g., n ≤ 60 subjects.
Thus, for typical SNRs encountered in behavioral neuroimaging
research, a sample size of approximately n = 100 may be
required. However, ridge regression may prove useful for smaller
samples (cf., Figure 4 and Figures S2–S6).

7.4. General Recommendations
When applying penalized regression, a neuroscientist often wants
to know which penalized regression method will be most useful
for their particular data. Themethodology presented in this paper

can help answer that question. To compare the performance
of different penalized regression approaches on one’s own
data, we recommend an approach similar to that employed in
Section 5. In particular, the bootstrap QNT approach can be
applied to produce a graphic similar to Figure 3, which can be
useful for assessing the sensitivity of the bootstrap enhanced
penalized regression to the λ and α tuning parameters (i.e., for
assessing how λ and α affect variable selection). Furthermore,
to assess the effectiveness of the penalized regression for one’s
own data, it is possible to use a Monte Carlo approach
similar to that used in Section 6. Specifically, a Monte Carlo
simulation can be used to assess the performance (e.g., Type
I and Type II Error rates) of the methods under different
situations, e.g., sample sizes, signal-to-noise ratios, sparsity levels,
correlation structures, etc. The R code that we provide in
the Supplementary Material can be easily modified for such
analyses.

7.5. Concluding Remarks
The utility and power of penalized regression in the clinical
neuroscience field will only amplify as increasing numbers of
large fMRI datasets become publicly available. The Human
Connectome Project (Van Essen et al., 2012) is one such
example, where researchers have access to an ever-expanding
fMRI dataset (end of goal of n = 1200). This advance
in the neuroimaging field stresses the need to adopt newer
statistical techniques, like penalized regression, to accommodate
high dimensional neuroimaging data. In this article, we have
provided both theoretical and Monte Carlo results to advance
the use of penalized regression with neuroimaging data. In
an online supplement, we also provide open-source R code to
select penalized regression tuning parameters and to evaluate
regression coefficient significance using nonparametric bootstrap
methods. We hope that these resources will help other
researchers to better understand their functional neuroimaging
data.
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