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Recent advances in fMRI research highlight the use of multéviate methods for

examining whole-brain connectivity. Complementary datalriven methods are needed for
determining the subset of predictors related to individuaifferences. Although commonly
used for this purpose, ordinary least squares (OLS) regregs may not be ideal due
to multi-collinearity and over- tting issues. Penalized egression is a promising and
underutilized alternative to OLS regression. In this papewe propose a nonparametric

bootstrap quantile (QNT) approach for variable selection ithh neuroimaging data. We
use real and simulated data, as well as annotated R code, to daonstrate the bene ts

of our proposed method. Our results illustrate the practichpotential of our proposed

bootstrap QNT approach. Our real data example demonstratefiow our method can be

used to relate individual differences in neural network carectivity with an externalizing
personality measure. Also, our simulation results revediat the QNT method is effective
under a variety of data conditions. Penalized regressionglds more stable estimates and
sparser models than OLS regression in situations with largeumbers of highly correlated
neural predictors. Our results demonstrate that penalizedegression is a promising
method for examining associations between neural predicts and clinically relevant traits
or behaviors. These ndings have importantimplications fothe growing eld of functional

connectivity research, where multivariate methods produg numerous, highly correlated
brain networks.

Keywords: penalized regression, bootstrap, fMRI, functiona | connectivity, individual differences, independent

component analysis

1. INTRODUCTION

Multivariate methods for analyzing functional magnetic reance imaging (fMRI) data, such as
independent component analysis (ICWcKeown et al., 1993are becoming increasingly popular
for exploring the brain's resting functional connectivityi{|ler and D'Esposito, 2005; De Luca et al.,
2006; Churchill et al., 20)4Data-driven methods like ICA are able to reduce the dinenality

of fMRI data from an immense number of voxels to a manageable bemof components (or
networks) with interpretable functions_@ird et al., 2011; Du et al., 20)2However, the ICA
process itself cannot tell us which networks are importantrie or more criteria of interest. Thus,
additional methods are needed to identify the subset of wuttively important networks. This
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latter point is particularly relevant to clinical neurosc@n VIP may be a challenging taskunea et al. (201Irecommend
research, where there is an increasing interest in undedétg the conservative threshold of 50% because their goal istthot
how the aberrant organization or functionality of largeafe miss any possibly relevant predictors” (p. 1523). It appears that
brain networks contributes to psychiatric and neurologicalthis 50% threshold may view Type Il Errors (False Negatives)
disorders [Menon, 201). Regression models, such as ordinaryas more costly than Type | Errors (False Positives). Uninformed
least squares (OLS) regression, have often been used $or thise of this 50% threshold could potentially result in many False
purpose Gtevens et al., 2007; Kim et al., 2009; Mennes et al., 20Rasitive ndings. In neuroimaging research, attempts to iegtie
Eaton etal., 2012; Choi et al., 2013 False Positive ndings can result in substantial wastegséarch
We advocate using penalized regression, often callegsources (time and money), so a more stringent threshold
regularized regression (s€@u and Hastie, 2005; Kyung et al., may be preferred. Nonetheless, further research is needed to
2010, as a complementary data-driven method for selectinginderstand how to best use bootstrap enhanced results (with
networks or neural signals related to a criterion of intér€ur  or without VIPs) to perform variable selection and parameter
speci ¢ example illustrates how to relate ICA-derived neuralestimation when applying penalized regression to neuroimggin
networks with individual di erences in maladaptive behawpr data.
however, we will describe several additional applications
for which penalized regression is highly valuable in clihica
neuroscience research. In the present context, penalizagiens 3. METHODOLOGICAL OBJECTIVES
to the shrinkage of regression coe cients toward zeriaifies
et al., 2013p. 204). It has been shown that this coe cient In this paper, we show how computer-intensive methods, such
attenuation reduces model over- tting, and when coe cienére  as bootstrappingHfron, 1979; Efron and Tibshirani, 199&nd
shrunk to zero, penalized regression performs variable tsetec Monte Carlo simulations, can be used to assess the signi cance
(Tibshirani, 1996, 2011; Zou and Hastie, 2)0Gurrently, the of penalized regression coe cients in neuroimaging applicaion
application of penalized regression in neuroscience researdfo illustrate our proposed method, we use real neuroimaging
is hampered by the lack of available methods for testing thdata to predict individual di erences on a self-report measure
signi cance of penalized regression coe cients (skeckhart of externalizing personality traitsk¢ueger et al., 2002 Our
et al., 2014for a discussion). procedures advance foundational work Bynea et al. (2011n
three important ways. First, we demonstrate the relativengfites
of penalized regression over OLS regression in neuroimaging
2. APPLICATION OF PENALIZED datasets with highly correlated predictors. Second, we simw
REGRESSION TO FMRI a novel nonparametric bootstrap quantile (QNT) con dence
interval approach can be e ectively used for variable selection
We are not the rst to apply penalized regression toin penalized regression models. Third, we provide a series
neuroimaging data (e.g., s€eldés-Sosa et al., 2005; Carroll et al.of simulations to illustrate the validity and reliability afur
2009; Bunea et al., 2011; Ryali et al., 2012; Luo et al., 20pBoposed methods across di erent data conditions (i.e., dirgre
Churchill et al., 2014; Watanabe et al., 2014; Chiang €2@L5; sample sizes and signal-to-noise ratios). Moreover, our stsidy i
Kauttonen et al., 20)5However, few studies have used penalizedhe rst (to our knowledge) to examine individual di erences
regression for purposes similar to ours (e.g., selectingcelin in ICA-derived neural connectivity metrics using penalized
or neuroimaging biomarkers that predict behavior). One r#ce regression.
and promising approach for variable selection is the bootstrap We have two overarching goals in this work: (i) illustrate
enhanced elastic net proposed Byunea et al. (2011)This the relative advantages of penalized regression (ridgstiela
method combines the nonparametric bootstrap with penalizedhet, and the lasso) over OLS regression when analyzing fMRI
regression to perform variable selection for neuroimagiaged data, and (i) compare the variable selection performanceuof o
Speci cally, Bunea and colleagues recommend using thehblaria proposed bootstrap QNT con dence interval approach to that
inclusion probability (VIP), which is the percentage of bdcap  of the VIP. The remainder of this paper is organized as follows.
replications in which a coe cient is estimated as non-zeroithlV  Section 4 provides background on OLS and penalized regression
a proper Bayesian interpretation (s@einea et al., 20)]1the and also presents our proposed bootstrap QNT approach for
VIP can be interpreted as the posterior probability of incluglin variable selection. Section 5 presents an application to real
the j-th predictor in the model. After picking an appropriate fMRI data where the goal is to predict individual di erences in
threshold, the VIP can be used to select predictors for use iaxternalizing traits (e.g., impulsivity, substance use) fi@A-
follow-up analysesBunea et al. (2011gsed a 50% threshold, derived connectivity networks. Section 6 illustrates hownltéo
but cautioned that “the threshold of 50% is user specied’Carlo simulations can be used to compare the e ectiveness of
(p. 1523). di erent penalized regression approaches across a variety of
Although the VIP is theoretically appealing, there has beenata conditions. Section 7 presents our conclusions andrgéne
little work exploring how the VIP performs in practice when recommendations for applying penalized regression methods in
analyzing a collection of correlated predictors that are ¢gbi functional connectivity and other neuroimaging studiese\also
of those encountered in neuroimaging research. With reaprovide annotated RK Core Team, 20)6code that can be
neuroimaging data, determining an appropriate threshold frt used to replicate and apply our analyses, and Supplementary
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Material (SM) that includes additional background inforr@at  because high correlations within and between brain network

on functional connectivity and externalizing. are often present at rest and during taslok et al., 2005; Sporns,
2013.

4. STATISTICAL METHODOLOGY . :

_ 4.2. Penalized Regression

4.1. OLS Regression We now brie y review the mechanics of penalized regression

In its simplest form, an OLS regression model has the form and focus on three members of this statistical family: ridge
regression Kloerl and Kennard, 1970 the lasso Tibshirani,

ViD 0C 1Xx1C C pXipC (1) 1996, and the elastic netZou and Hastie, 2005 The three

penalized regression models that we describe in this paper can

where y; denotes the criterion (dependent variable) for thebe viewed as extensions of OLS regression. As describedsin th

i-th subject,xj denotes thej-th predictor (out of the set of section, these and other penalized regression models can oft

p predictors) for thei-th subject, o denotes the regression overcome the aforementioned limitations of OLS. Speciyall

intercept, ; denotes the regression coe cient for thgth by adding a penalty to the OLS t function in Equation (2),

predictor, and ; denotes the dierence between the observedhese methods can: (i) decrease coe cient estimation eenod

and model implied criterion for the-th subject. In a typical (i) produce parsimonious and interpretable models from large

least squares tting procedure, the coe cients in Equatidr) @are  numbers of highly correlated predictorgipshirani, 1996; Zou

estimated by minimizing the OLS criterion: and Hastie, 2005 As such, penalized regression techniques
0 1, represent promising alternatives to OLS methods for anatyzin
X0 P high dimensional data, including those used in functional
Food )D @, XA (2)  connectivity studies.
iD1 D1 Ridge regressionHoerl and Kennard, 1970is an early
example of penalized regression that was developed to
where D (o 1;:::; p) andn denotes the number of overcome known limitations of OLS regression with highly
subjects. correlated predictors Hawkins, 197h In ridge regression,

OLS regression is a popular technique for identifying the ICAmodel coe cients are estimated by adding a penalty function
derived networks that predict behavidgievens et al., 2007; Kim to the OLS t function. Speci cally, ridge regression adds a
et al., 2009; Mennes et al., 2010; Eaton et al., 2012; Chai et guadratic shrinkage penalty to the OLS criterion to control
2013. Unfortunately, OLS regression may be ill-suited for thisthe size of the regression coe cients. More formally, the edg
purpose. For instance, unless the ratio of subjects to vasaisl regression discrepancy function can be written
large, OLS regression will generate models that over- tdata,
such that the estimated regression coe cients may not gafiee
to other datasets. In addition, such models will have artiligia Fridgel ) D FoLd ) C ? ®3)
in ated R%-values (ames et al., 2018, 80). This is a particular jb1
concern in neuroscience research where collecting newaging
data is expensive and samples are often snialtton et al., whereFoLq ) is de ned in Equation (2), ¢enotes a tuning
2019. In regression analyses, over- tting may occur wheneveparameter that ranges from 0 to in nity, and jij_ # denotes
the number of predictors approaches the number of subjectshe quadratic shrinkage penalty, which is equal to the suntef t
Moreover, regression models with large numbers of predictorsquared regression coe cients. The expression in Equation (3
are di cult to interpret. Recognizing these points, reseanche shows that as approaches in nity, all coe cients are shrunk
often prefer parsimonious models that only retain variablédw toward zero (seelames et al.,, 2013. 215). However, the
substantial e ectsTibshirani, 199% shrinkage rate is not equal across coe cients. Namely, larger

To identify these important predictors, some researchersoe cients are shrunk more than smaller coe cients (re eicig a
test multiple smaller models. However, this practice igquadratic penalty). Moreover, though not immediately apparent
methodologically unsound as it increases the chances @i Equation (3), it can be demonstrated that in ridge regressi
committing Type | Errors, i.e., retaining coe cients that @r the underlying principal components with smaller variances ar
incorrectly deemed signi cantly di erent from zero§jmmons shrunk closer to zero than those with higher variances (see
et al., 201). Moreover, in OLS regression, tipevalues that ag Hastie et al., 2009. 67). These small-variance directions are
predictor signi cance are always conditional statisticstimt believed to contribute most to mean-squared error, and thal go
they depend on the current predictor set. Thus, fhealue fora of ridge regression is to bias the solution coe cient vectway
given predictor may change substantially after the inclusio  from directions that have small spread (seenk and Friedman,
exclusion of other predictors to an existing model. This issue 1993,p. 113). As such, ridge regression estimates are putatively
particularly salient for models with highly correlated predirs more stable than their associated OLS counterparts. However,
(Pedhazur, 1997 Related to this problem is the associatedn general, ridge regression models are often not parsimaniou
problem of “bouncing betas” where OLS regression coe cientdecause the method rarely attenuates coe cients to zero.
are unstable when computed from highly correlated variables The lasso (i.e., the least-absolute-shrinkage-andissiec
(Darlington, 1968. This is likely to occur with fMRI data, operator Tibshirani, 199§ is a penalized regression approach
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that overcomes the aforementioned limitation of ridge reggion is controlled by a tuning parameter,, that ranges from 0 to
by allowing regression coe cients to be shrunk to zero. Thus1. In eect, controls the proportional contribution of the
in addition to generating robust regression coe cients Wit ridge regression and lasso penalties. For example, when
attractive out of sample properties (i.e., lasso models hold up and D 0, Equation (5) reduces to the ridge regression
well under cross validation), the lasso can be used as al@riadiscrepancy function in Equation (3). When> 0Oand D
selection routine when searching for parsimonious models (s€l, Equation (5) reduces to the lasso discrepancy function in
James et al., 201p, 219). Lasso coe cients are estimated byEquation (4). Whenever > 0and 0< < 1, Equation (5)
minimizing the OLS criterion plus a penalty function that edgia de nes the elastic net.
the sum of the absolute values of the regression coe ciégvitsre The elastic net, like the lasso, can achieve coe cient dtage
formally, the lasso discrepancy function can be written as and variable selectiorzpu and Hastie, 2005Unlike the lasso,
but similar to ridge regression, the elastic net can retaioren
o than n variables in data sets in whigh > n. Moreover, the
Fass€ ) D Fod ) C 1l (4)  elastic net has a unique “grouping e ecZ¢u and Hastie, 2005
b1 property that is relevant when analyzing data sets with ssbset
Po of highly correlated variables. Whereas, the lasso in thases
where [, ] jj denotes the sum of the absolute values of thg arbitrarily select one variable from a cluster of corteth
regression coe cients, and all other terms in Equation (4Ba variables, the elastic net assigns all variables withinreleted
as previously de ned. In contrast to ridge regression, thesta  subset a common coe cient. Thus, when using the elastic net,
shrinks all coe cients by a constant amount (Tibshirani,96).  highly correlated variables are retained or discarded aet ins
Thus, large coe cients are retained in a model whereas senall the nal model. This singular characteristic of the elastietn
coe cients are shrunk to zero and thus removed from the model.is particularly salient for fMRI data given the potential high
Note that although each predictor in a lasso has the possibilitcollinearity between brain networks. In summary, the étast
of being included in the nal model, only predictors (where net is a convenient method for nding sparse and interpretable
n denotes sample size) can be assigned a non-zero coe Cieffegression models in data sets with large numbers of predictor
Consequently, in contrast to OLS regression, a lasso I€gres and possibly smaller numbers of observations. Data sets with

can be estimated in data sets that contain more predictors thahese characteristics are common in neuroscience research
observations. This feature has made the lasso a popular tool in

GWAS researchif Angelo et al., 2009; Brown et al., 2011; Ayers . )
and Cordell, 201Bwhere the number of predictors can range in 4.3. Tuning Parameter and Variable
the thousands. Later, we show how the lasso can also be ptp tabSelection

used in data sets whene> p, and can produce better results than A|l three penalized regression methods that were introduced
OLSwhem p. in the previous sections include tuning parameters to catiéra
The third penalized regression algorithm that we describe ip (). we used thegimnet package Kriedman et al., 200
this paper is called the elastic netolu and Hastie, 2005As  jn the R programming language to implement the elastic net.
shown below, this model can be conceptualized as a combmatiorhjs package selects the optimal value afsing k-fold cross-
of ridge regression with the lasso. More formally, the elas#ic  \aJidation (seeJames et al., 201p. 254). Ink-fold cross-
includes a composite penalty function that equals a weightet s yajidation, a data set is randomly parsed ittsubsets or folds.
of the ridge and lasso penalty functiorfsriedman et al., 2090 Typically, each fold contains an equal sized subset of the. dat
This composite penalty putatively allows the elastic net toenj ysing these subsets, 1 folds are combined into a training set
the methodological advantages of both ridge regressionth@d and the remaining fold serves as a test (or holdout) sample. A
lasso Cho et al., 2010 The elastic net discrepancy function hasmodel is t to the training data and then applied to the holdout
the form sample to calculate a cross-validated mean-squared error (CV-
MSE). This process is repeated by systematically creatimirigai

Fene( ) D Ford ) C P (1) ®)  sets that exclude a single member of the original folds. The
where glmnet package implements this procedure by evaluating each
term in a sequence such that the lowestvalue generates a
P()D }(1 )Xp 2¢c X i i 6) regression model that includes all predictors, and the hsghe
2 o1 J i1 value generates an intercept only regression model that @eslu

all predictors. Unfortunately, thglmnet package does not
denotes the elastic net penal®du and Hastie, 2005Notice in  include a function for locating the optimal value of Thus, at
Equation (6) that, as mentioned earlier, the elastic net figna present, researchers must produce their own code for locating
is a composite function that is composed of two componenbptimal values. Many researchers tunend simultaneously
penalty functions. The rst penalty minimizes the weightedrsu using cross-validationGho et al., 2009, 2010; Li and Li, 2010;
of squared regression coe cients and thus equals the ridg&unea et al., 2011; Kohannim et al., 2)1Qther researchers
penalty, whereas the second component minimizes the weightetse preselected values and then estimateby cross-validation
sum of absolute regression coe cients and thus equals teeda (Hautamaki et al., 2011; Shen et al., 2011; Li et al.,)20ithe
penalty. The relative contribution of the two component peredti  analyses described below, we employed the latter approach.
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Once tuning parameters have been selected, a logical npxt stg in the model. Colloquially, if the bootstrap distribution for
is to identify regression coe cients that are signi canttly erent j shows a “large” di erence from zero, we can conclude that
from zero. Unfortunately, there are no established methauts f the j-th predictor may be important for the model. How to
obtaining accuratg-values and con dence intervals for elastic quantify a “large” di erence from zero is one of the topics
net and lasso regression coe cients (although seekhart et al., that we explore in this paper. One possible approacBlsea
2014 for a novel method for calculating asymptotically vatid et al's (2011 VIP, which quanti es the importance of thé
values for the lasso). Fortunately, by using computer intens th predictor as the proportion of times (out of thB bootstrap
methods (e.g., the bootstrap or jackknife), researchezsahte replicates) thej-th predictor receives a non-zero coe cient
to evaluate the signi cance of penalized regression coentse estimate. With a Bayesian interpretation (i.e., Laplace poior
via sample splitting leinshausen et al., 2009; Wasserman andj), the VIP can be understood as the posterior probability of
Roeder, 20090r resampling methods{Angelo et al., 2009; including thej-th predictor in the model (seBunea et al., 20).1
Buneaetal., 2011; Tibshirani, 2)1However, available research However, for real neuroimaging data, there is no theorética
has not reached a consensus on how to de ne standard errorgason that this Laplace prior should be preferred. Furthermore
or con dence intervals for lasso estimates (3éeshirani, 1996; it should be noted that by dichotomizing (zero vs. non-zetiog
Osborne et al., 2000; Kyung et al., 2010; Tibshirani, R@fAe estimated predictor coe cients, the VIP does not take advaeta
source of this debate is that several techniques for caiogla of coe cient magnitude information that could be useful for
lasso standard errors assign standard errors of zero twéadl variable selection.
predictors (sedibshirani, 1996; Osborne et al., 2000; Chatterjee To incorporate magnitude information into the variable
and Lahiri, 201). Nonparametric bootstrapping is advantageousselection process, we propose using the quantiles of the bgotstra
in this regard, as even an excluded predictor can have a nowistribution of j to determine the signicance of thg-th
zero standard error if said predictor has a non-zero estimatepredictor. Given a signi cance threshold 1 , the j-th
coe cientin at least one bootstrap samplé&ipshirani, 201). predictor is selected with threshold 1 if the 100(1

)% bootstrap con dence interval for; does not contain zero.
. . . . The 100(1 )% bootstrap con dence interval is given by
4.4. Enhancing Penalized Regression with [Q. =!Qua =l whereQ: denotes the quantile value such
the Bootstrap that D 3 EDllngu q. g Where 1gis an indicator function
We begin by reviewing the bootstrap enhanced (BE) procedurt%at equals 1 if the argujfngtlant within braces is true and eqQals
proposed byBunea et a(2011 p.1522). The underlying logic of - . .
otherwise, ano% denotes the estimate of in the b-th bootstrap

this procedure can be summarized as follows: replicate. Compared to the VIP, our proposed quantile approach
1. [Model tting] For each value of and , complete the producesamore stringentvariable selection rule, as ecetthy

following steps: the following theorem.

a) [Elastic net] Fit elastic net on all standardized predi€to  Theorem 1.For the same signi cance threshdld . the

b) [Bias correction] Fit OLS model using predictors selectehymber of predictors declared signi cant by VIP selectitin w
by elastic net. be greater than or equal to the number of predictors declared

2. [Parameter tuning] Applk-fold CV to nd  and/or that ~ Signi cantby quantile (QNT) selection.
minimizes CV-MSE.

3. [Bootstrap] Apply Steps 1-2 to eachBbootstrap samples. To prove Theorem 1, we need to show that (i) jfis selected

by QONT, then j must also be selected by VIP, and (ii) if
The bias-correction (Step 1b) is meant to correct the bias not selected by VIP, then; must not be selected by QNT.
(shrinkage) induced by the penalized regression tting isfBta. Proof of part (i) is straightforward: if j is selected by QNT
It should be noted that this bias-correction step is not resagy  with threshold 1 , then (by de nition) zero is not contained
to select tuning parameters in penalized regression modets. Fwithin [Q;; =l Q1 =], which implies thatVIP; > 1
example, this bias-correction step is not implemented in populaifo prove part (ii), we o er a simple proof by contradiction.
software such as thglmnet package mentioned previously Suppose that the VIP does not selegas signi cant (i.e.VIP; <

(Friedman et al., 20)0Moreover, due to the bias vs. variancel ), but ONT selects j as signi cant (i.e., zero is not in
trade-o0, it is unclear whether bias-correction at this patlar [Q;; =l Q1 =2]). Clearly, this creates a contradiction because
juncture produces better coe cient estimates from a mean-VIP; < 1 implies that at least 100 % of the coe cients are

squared error perspective. Further research is therefordate®  zero across bootstrap replications, which implies that zerstmu
understand the properties of bias-corrected penalized reigress be within [Q;; =l Q1 =]
coe cients. Because it is unclear whether the added compotat After applying the VIP and/or QNT approach to select
involved with the bias-correction is worthwhile, we do not predictors, it may be desirable to obtain nal coe cient estates
implement the bias-correction step for variable selectiothis  corresponding to the selected predictors. Note that the peedli
paper. coe cient estimates from the full model could be considered
Applying the BE method produces a bootstrap distribution forundesirable for two reasons (i) the penalization adds biah¢o
each regression coe cient,j. The information in this bootstrap solution, and (ii) these parameter estimates are conditioor
distribution can be used to assess the in uence of the predict the other (insigni cant) predictors in the model. One simple
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approach to obtain nal coe cient estimates is bias correctjo
i.e., tarestricted OLS model using the selected predictdhss
sort of approach has been appliedibiyon et al. (2004{o obtain
bias-corrected coe cients after using the Least Angle Regjmn
algorithm to select predictors. Note th&unea et al. (2011)

changed from gray to white or vice versa (occurred 5 times).
High-resolution T1-weighted structural scans were cadddor
registration.

Prior to performing the penalized regression, we processed
the fMRI data using the following procedures. Data were

propose this sort of bias-correction for the tuning parametemre-processed using FSL's MELODIC ToolkiPre-processing

selection, which is di erent from our use of the bias-corriect

procedures included registration to T1-weighted structura

In contrast, we propose the use of bias-correction to obtaial n image, brain extraction, grand mean intensity normaliaatof
coe cient estimates corresponding to the predictors that arethe 4D dataset, high pass temporal ltering, motion correatio

determined relevant for the model.

5. APPLICATION TO REAL FMRI DATA

5.1. Data
To demonstrate the utility of penalized regression for fliocal
connectivity analyses, we used a moderately large neugiinga

and motion regression as the nal step. Resting state data
were then decomposed using the spatial ICA algorithm in the
MELODIC toolkit, which assumes spatial independence between
components Calhoun et al.,, 2001 In the Supplementary
Material we detail our specic procedures for employing
ICA with resting fMRI data. Artifacts were visually identi ed
following procedures outlined byKelly et al. (201Q) this

datasetif D 122) withp D 27 spatial components determined step resulted in 27 non-artifactual ICNs. Non-artifactu@Ns
via ICAL. Speci cally, we used a subject-level metric derived¢overed a range of neural functions, which included: vision,
from these components (see Section 5.2 for details on thgudition, motor, and visuospatial processing as identied by
metric computation). Although the ICA-generated componentsl_aird et al. (2011,)seeFigure 1

were spatially uncorrelated at the group level, the 27 stibjec

level metrics calculated based on these components werg/highh.2. Analyses

correlated across subjects, with correlations rangingnf14

Dual-regression was used to derive subject speci ¢ maps and

to 0.77. The criterion for our regression analyses was th#me series for each individual based on the group-level maps

Externalizing Spectrum InventorK(ueger et al., 20Q/which is
a composite of externalizing traits and behaviors (e.qg., isipily

derived from the ICA (Beckmann et al., 2009; Zuo et al., 2010;
Poppe et al., 2013; Wisner et al., 2013a; Moodie et al.) 2Bitst,

and prior thefts) that have been identi ed as important marker the complete set of group-level spatial maps was used as spatial
of psychopathologyrueger et al., 2002See the Supplementary regressors for each subjects 4D dataset. This procesgiald
Material for background information on the neural basis of set of subject-speci c time series, with one per group-leveiapa

externalizing.

map for each subject. We elected to apply the group-level spatial

Then D 122 male participants were recruited from the maps derived from the present sample in the dual regression,
community via the CraigsList.org website, and were betweegiven our relatively large sample size when compared withrothe
the ages of 20 and 40 (mean d9e25.7 years). The University publicly available maps. Second, subject-speci ¢ time seges w
of Minnesota institutional review board approved the studyused astemporal regressors for the respective subjectstaBeda
and participants provided written informed consent. Subjectso derive a set of subject-speci ¢ spatial maps. The value of each
were excluded for neurological and psychiatric disordersyoxel in a particular subject's spatial map re ected how wedl th
regular psychotropic drug use, MRI contraindications (e.g.time series of that voxel corresponded to the overall timeesef
ferromagnetic implants, non-removable piercings, pacensker the component, for the respective subject.
and excessive movement (mean absolute displacement aboveNetwork coherence (within-network connectivity) was
1.5 mm, or any absolute displacement above 2.75mmgalculated for each subject (for all ICNs) using the subjece
Neuroimaging data were acquired on a 3T Siemens scanner gppatial maps from the dual-regression procedure (Sgare 2).
the University of Minnesota’s Center for Magnetic Resonancgirst, group-level components were normalized by the maximum

Research, and resting state scans were 5 min2loBgring

value and then thresholded at values of zn@x0.30 Poppe

the scan, researchers assured that participants remainekieawat al., 2013 Second, the thresholded group-level component
by having them push a button each time a xation crossmaps were binarized and subsequently applied as masks to

Iwe also note that the discussed penalized regression methods eauivalently
applied to other subtypes of neuroimaging data, such as voxel-wisgty or

between-network connectivity metrics. However, a voxel-wise amranay not
be optimal, as, ideally, one would like each of the variables in the pobhavte
some meaningful functional distinction. Voxels do not meet tbidtierion, whereas
components do because they re ect networks that map onto cogréimotional
processes and behaviors, elgaird et al. (2011) Thus, from a theoretical
perspective, it is valuable to rst reduce neuroimaging data to fiamally

homogeneous components before examining brain-behavior assosa We

refer the reader to Section 7.2 for a discussion of alternative agifdhs of the
proposed penalized regression approach.

2We used the following scanning parameters: gradient-echo ech@plaraging

of 150 volumes; repetition time (TR 2s; echo time (TE)D 28ms; ip

angleD 80 ; voxelsizd 3.5 3.5 3.5mm.

the respective subject-level spatial maps. Third, the average
of the coherence values for all voxels within the respective
group-level mask for each component was computédster

et al., 2013 This process was repeated for all subjects to yield

Shttp://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MELODIC

4Although our speci c example focuses on how individuals di er inres of
functionality within group-de ned networks, researchers may aitgively explore
relations between individual di erences in network topography aexternal
behaviors/traits via penalized regression. Single-subject 1&#Athe benet of
accommodating unique spatial and temporal features, but has disgalges in
that the resulting components can be noisy and are not necessarityixed
equivalently for every subjecE(hardt et al., 201)1 Consequently, in this paper
we use the group-de ned networks to ensure comparability across cisbje
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FIGURE 1 | Examples of two intrinsic connectivity networks de rived using independent component analysis with functional n euroimaging data: (A)
medial vision network, which contains occipital cortex(B) Posterior portion of the “default mode network,” which conains areas such as the posterior cingulate
cortex, precuneus, and bilateral angular gyrus.

average coherence values for the 27 non-artifactual ICKs fas declared signi cant using the corresponding signi cance
all subjects. For each subject, these values represent énallov threshold (ordinate), where the threshold is 1 for both
voxel coherence within each network; larger values re eegater  variable selection methods. Note thatis declared signi cant if

coherence over time. Speci cally, these metrics represeAt ICVIP; > 1 (for VIP selection) or if 062[Q;; =l Q1 =]
network coherence, which we distinguish from the spectra{for QNT selection). As a rst point, note that the VIP is not
coherence described in the signal processing literature. useful for the OLS ( D 0) and ridge ( D 0) solutions, given

The purpose of this example is to compare variablghat OLS and ridge will not typically zero-out any coe cients: |
selection results using OLS regression vs. BE penalizedntrast, the QNT approach can be meaningfully applied to the
regression techniques when analyzing real neuroimagirig. da OLS and ridge results, as well as the other (non-ridge) elasti
We compared ve di erent versions of the elastic net by xing results. As a second point, note that the QNT approach always
at vevalues 2f0;0.250.50.75 1g For each of the ve elastic produced a sparser solution than the VIP approach for the same
net models, we used thley.glmnet  function (Friedman et al., signi cance level, which is expected given the implicatiofs o
2010 to perform 5-fold cross-validation to select the optimal Theorem 1.

To make the OLS results comparable to the penalized regressionWhen we applied the VIP with the conservative 50%
results, we applied the bootstrap procedure to the OLS ressilts threshold, the various models selected anywhere from 25to 2
well. This means that for each of tBeD 5000 bootstrap samples, predictors as signi cant (out of 27 total predictors). The eka
we applied six di erent methods: OLS and ve elastic net modelsnumber of predictors selected varied slightly as a functiébn o
We compared the variable selection results using both the VIEhe elastic net, tuning parameter. At more stringent thresholds
and QNT methods with various signi cance thresholds: 1 2 (e.g., 70-90%), the VIP still selected upwards of 15 predietors
f0.50.55:::;0.9 0.95 We refer readers to the R code in the signi cant. The most parsimonious VIP-suggested model (at a

SOM for further details on our analysis procedure. 95% threshold) contained four predictors: ICN1 (medial @igj,
ICN7 (posterior insula and Heschl's Gyrus), ICN11 (anterior
5.3. Results insula, ventral striatum, and anterior cingulate cortexand

In Figure 3 we plot the variable selection results for the realCN14 (anterior insula, and orbitofrontal cortex). In camatst, the
data using both the VIP and QNT approaches. For eaclnost parsimonious QNT-suggested model (at a 95% threshold)
subplot of Figure 3 a gray box is plotted if ; (abscissa) contained only ICN7 and ICN14.
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FIGURE 2 | lllustration of network coherence calculation us ing ICA with dual-regression.

FIGURE 3 | Results from real data analysis using the VIP approa  ch (top) and the QNT approach (bottom).  Each column represents a different regression
model: OLS ( D 0), ridge regression ( D 0), elastic net ( D 0.25; 0.5; 0.75), and the lasso ( D 1). Vertical gray bars indicate whether a speci c predictor.e.,
network derived using ICA, was selected at a given signi cancéhreshold.

In Table 1 we display the coe cient estimates for the tted have identical coe cient estimates, thus we present the ltssu
regression models. Note that OLS-All refers to the non-BESOLfor these models in a single column of the table. For these
solution, where coe cient signi cance was determined ugin three levels, the same two predictors (ICNs 7 and 14) were
normal theory asymptotic results. Also, notice that the #hre included in the nal OLS model that we used to obtain bias-
sparsest BE penalized regression models¥ 0.500.751) corrected estimate3able 1also contains information regarding
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TABLE 1 | Coef cient estimates for OLS, ridge regression, elas tic net, and the lasso.

Predictor OLS-All OLS( DO0) Ridge ( D 0) E-Net ( D 0.25) E-Net ( 0.5)
ICN1: Medial Vision 0.47 0.16 0.26 0.14 0.00
ICN2: R Fronto-Parietal 0.19 0.00 0.00 0.00 0.00
ICN3: Bilateral Supramarginal Gyrus 0.15 0.00 0.00 0.00 0.00
ICN4: L Postcentral Gyrus 0.05 0.00 0.00 0.00 0.00
ICNS5: Bilateral IFG 0.12 0.00 0.00 0.00 0.00
ICNG6: Lateral OccipitalC PrecuneusC PCC 0.09 0.00 0.00 0.00 0.00
ICN7: InsulaC Heschl's Gyrus 0.39 0.37 0.33 0.37 0.32
ICNS8: Bilateral Angular Gyrus 0.02 0.00 0.00 0.00 0.00
ICN9: PutamenC Amygdala 0.17 0.00 0.00 0.00 0.00
ICN10: Bilateral Superior Temporal Gyrus 0.02 0.00 0.00 0.00 0.00
ICN11: InsulaC Ventral StriatumC ACC 0.44 0.38 0.35 0.29 0.00
ICN12: Posterior Vision 0.18 0.00 0.00 0.00 0.00
ICN13: Parietal/Occipital Cortices 0.32 0.41 0.37 0.41 0.00
ICN14: Bilateral Insula and OFC 0.49 0.45 0.30 0.29 0.38
ICN15: Bilateral Frontal Pole 0.17 0.00 0.00 0.00 0.00
ICN16: Supplementary Motor 0.15 0.00 0.00 0.00 0.00
ICN17: Primary Motor 0.19 0.00 0.00 0.00 0.00
ICN18: Motor 0.07 0.00 0.00 0.00 0.00
ICN19: Frontal Medial CortexC ACC 0.31 0.31 0.00 0.00 0.00
ICN20: PrecuneusC PCC 0.03 0.00 0.00 0.00 0.00
ICN21: Occipital Pole 0.15 0.00 0.00 0.00 0.00
ICN22: R Postcentral Gyrus 0.26 0.00 0.33 0.00 0.00
ICN23: Cerebellum 0.04 0.00 0.00 0.00 0.00
ICN24: Subcallosal CortexC OFC 0.19 0.00 0.00 0.00 0.00
ICN25: Inferior Lateral Occipital 0.07 0.00 0.00 0.00 0.00
ICN26: Precuneus 0.09 0.00 0.00 0.00 0.00
ICN27: Hippocampus C AmygdalaC TP 0.01 0.00 0.00 0.00 0.00
R2 (Error Standard Deviation) 0.46 (0.83) 0.27 (0.88) 0.29 @6) 0.23 (0.90) 0.12 (0.95)

Coef cients that are signi cant at a 95% threshold are indicated vith boldfaced font. IFG, Inferior Frontal Gyrus; ACC, Anterior Cingulateo@ex; OFC, Orbitofrontal Cortex; PCC,
Posterior Cingulate Cortex; TP, Temporal Pole.

model strength. In particular, our ndings indicate that the design was motivated by our real data results. In the real data
more parsimonious models had smalR%-values. Consequently, example, we found that only ICNs 7 and 14 were selected as
compared to the sparser penalized solutions, the OLS soluticsigni cant using the lasso with a stringent QNT signi cance
was overly-optimistic about the model's ability to explainthreshold of 95%. Consequently, we designed a simulatiatystu
variation in externalizing scores. This e ect is more dramat where ICN 7 and 14 were the only active predictors, and the
if we consider the full OLS model with 27 predictors, whichother 25 predictors were inactive (i.e., had coe cients of@e
produced arR? of 0.46 and an Adjuste@? of 0.31. Interestingly, The purpose of the simulation was to determine how often each
we also found that the CV-MSE was almost identical for thepredictor (of the 27 predictors) was “selected as signi casihg
5 elastic net variations (see Figure S1). We investigategeth a variety of sample sizeg)( error standard deviations (), and
model t issues (and other issues) in the following simulatio selection methods (e.g., VIP vs. QNT).
study. In the simulation, the two active coe cients were set at D
0.3 and 14 D 0.4; these values were inspired by the least-
squares estimates from the OLS model that included only ICNs

6. APPLICATION TO SIMULATED FMRI 7 and 14 as predictorsQ D 0.32 andQ; D  0.38 (see

DATA Table ). We manipulated two simulation conditions: (i) sample
size (4 levelsn 2 30,60 90 122), and (ii) error standard

6.1. Design deviation (3 levels; 2 f0.50.7 1g. Treating then D 122

We designed a simulation study to evaluate and compare theubjects as the population, the threaalues correspond t82 2

e ectiveness of OLS and various penalized regression proesdurf0.33 0.2 0.11g respectively. Theseand values were selected
when analyzing simulated neuroimaging data. To ensuredbat to cover the range of values encountered in typical neurointag
simulation results were relevant to our problem, our simidat studies. In our real data example with only ICNs 7 and 14
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included in the model, the estimated error standard dewiaiis parameter. For most examined sample sizes, the median CV-

aboutOD 0.95. MSE was nearly identical for all choices ofsee Figure S2); the
Our data generation procedure was as follows. To facilitatenly noteworthy di erence is that the ridge solution producad

comparisons between the simulation and the real data resuis noticeably larger CV-MSE with only D 30 subjects.

used the design matriX, from the real data to generate simulated

data. For each sample sine we randomly sampled (without 6.3.2. OLS vs. Penalized Regression Results

replacement)n subjects from our sample of 122 observedOur rst overarching goal was to compare OLS vs. penalized

response vectors, and used the correspondingws ofX as the regression. To address this aim, we focus on the QNT results,

true predictors. The true response variable was de ned as given that the VIP results are uninformative for OLS and
ridge. We found that when using OLS regression, the active
yi D 0.%7 0.4;14C predictors (ICNs 7 and 14) were selected most frequentlysacro

the di erent thresholds (se€igure 4). At small thresholds (e.qg.,
m using con dence intervals with 50% theoretical coveragesp
the OLS and ridge results had Type | Error rates of about 0.6
({ndicated by yellow and green cells in the bottom rows), wherea
the other QNT results had Type | Error rates of 0.3 or less
(indicated by dark blue cells in the bottom rows). Even using
6.2. Analyses the most stringent threshold of 95%, the OLS and ridge results
For each simulation replication (or generated dataset), wBad Type | Error rates exceeding 0.1 (indicated by blue an¥ dar
compared six di erent regression methods: (i) OLS regressiorpurple cells in the top rows). In contrast, when using a 95%
(ii) ridge regression, (iii)—(v) elastic net with D 0.250.50.75, threshold with QNT selection, the non-ridge elastic netules
and (vi) lasso. For each method, we uged 5000 bootstrap had Type | Error rates less than the nominal 0.05 level (ineid¢a
samples to determine the bootstrap distribution of each ef27 by purple cells in the top rows). These results reveal that OldS an
coe cients. Given the bootstrap distributions, we used t#>  ridge tended to produce more False Positives than did the other
(Bunea et al., 20)%and the QNT to determine the signi cance €lastic net methods.
of each predictor at ten thresholds of interest, i.e., 1 2 We also examined model t for OLS vs. penalized regression
0.5 0.55:::; 0.9 0.95) Note that the VIP approach can only be using the simulated data (see Figures S2, S3). The boxplots
meaningfully applied to methods (iii) through (vi), wheredeet in Figure S3 display the 10B?-values (from 100 simulation

where i N(0; 2)is independently, randomly sampled fro
a normal distribution with mean zero and varianc€’. We
repeated this data-generation process 100 times for eacheof t
12 (4n 3 ) cells of the simulation design.

QNT approach is applicable to all methods. replications) that were obtained by applying the bias-correctio
procedure (see Section 4.4) to the variables selected at a 95%

6.3. Results QNT threshold. For comparison, we also plot th& results

6.3.1. Overview obtained by applying the non-BE OLS solution (OLS-AIl). Withi

We rst present the variable selection results forD 122 (see each subplot, the dashed line displays the fRdevalue treating
Figure 4, top), given that this simulation celh(D 122, D 1)is then D 122 subjects as the population of interest. Note that
most comparable to our real datéigure 4can be interpretedina Figure S3 illustrates the over- tting tendency of the non-BE
similar fashion taigure 3 for each level, each subplot displays OLS solution. In particular, the OLS-AIl solution tended tes-
the variable selection results for each predictor (abscitsgach  estimate the trud??, particularly at smaller sample sizes such as
threshold (ordinate). The novel aspectkifjure 4is that colors n D 30. Interestingly, Figure S3 reveals that ridge regresain
are used to illustrate the proportion of times that a predictasy  be useful for obtaining accurafé® estimates in small samples;
deemed signi cant at a given threshold, where purple indisatewhereas, the other BE approaches tend to underestirRate
a 0% selection rate across simulation replications, and reid small sample sizes. However, the ridge solution has larger
indicates a 100% selection rate across simulation replitatio CV-MSE values for smaller samples, see Figure S2.
Consequently, the results Figure 4 elucidate the Type | (False
Positive) and Type Il (False Negative) error rates for thebr ~ 6.3.3. VIP vs. QNT Selection
selection rules. In this case a Type | error entails the delecf ~ We next compare the VIP and QNT selection results that are
a non-active predictor (i.e., not ICN 7 or 14) ata given threlsh ~ summarized irFigure 4. As a rst point, note that in the OLS and
which is depicted as a cell having a non-purple II. ridge solutions, the VIP selected all predictors at all thotgs.
Ignoring the VIP-OLS and VIP-ridge results, it is apparentAs previously mentioned, the VIP can only be meaningfully
that the active predictors (ICNs 7 and 14) are selected mosipplied in elastic net situations where> 0, so this result
frequently by both the VIP and QNT approaches, regardless a6 not surprising. In contrast, the QNT approach produced
the chosen tuning parameters. Furthermore, for both the VIRelatively consistent results across the six regressiothaus.
and QNT approaches, we see the selection probabilities decreddoreover, the VIP approach selected larger models than QNT
as the tuning parameter increases toward the lasso solutionn every simulation condition (again, this was expected mive
Again, this result is expected, because the lasso is known Tdeorem 1). Note that witlm D 122 subjects and a VIP selection
produce sparser models than ridge regression. However, it threshold of 50%, using the VIP for predictor selection resuilt
interesting to note that, for these data, we found little demce in Type | Error rates that ranged from 0.2 to 1.0 (indicated by
between the CV-MSE for dierent choices of the tuning red, orange, yellow, green, and blue cells in the bottom rows),
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FIGURE 4 | Results from simulated data analyses with  n D 122 subjects using the VIP approach (top) and the QNT approac h (bottom). The top two rows
display results for a signal-to-noise ratio (SNR) of 1, the iaidle two rows for a SNR of 0.7, and the bottom two rows for a SNRof 0.5. Each column represents a
different regression model: OLS (D 0), ridge regression ( D 0), elastic net ( D 0.25; 0.5; 0.75), and the lasso ( D 1). Colored bars indicate how often a speci ¢
predictor, i.e., network derived using ICA, was selected at given signi cance threshold; the color scale represents thepercentage of times that a predictor was
selected across 100 simulation replications.

regardless of the model signal-to noise ratios (i.e., estandard In contrast to the VIP approachirigure 4 reveals that the
deviations). As expected, we observed larger Type | Errosrat€@NT approach produced smaller Type | Error rates. For the
as the elastic tuning parameter approached zero. Increasing non-ridge elastic net solutions & 0) with n D 122 subjects,
the VIP threshold reduced the Type | Error rates substantiallythe largest observed Type | Error rate (across all predictors
However, even with D 1 and a relatively stringent threshold of and thresholds) was 0.3 when using the QNT. Furthermore, as
70-80%, VIP selection produced False Positive results foymaioth the elastic net tuning parameter and the signi cance

of the inactive predictors. threshold 1 were increased, the Type | Error rate decreased
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for the inactive predictors. However, this decrease in Typeegression in the context of correlated fMRI data. To accorhplis

I Error rate came at the cost of a decrease in power (i.ethis goal, we demonstrated procedures using both real and
increase in Type Il Error rate). This is evident froRigure 4,  simulated neuroimaging data. We found that both the elastic
given that the QNT approach tended to have slightly lowemet and lasso selected two of the three networks contairtieg t
True Positive rates for the two active coe cients (comparedgreatest number of insula voxels. The OLS and ridge regmessi
to VIP). However, asFigure 4 reveals, when the signal-to- models retained the most predictors, whereas the elastic net
noise ratio increased (i.e., asdecreased), QNT had (i) similar and lasso models retained the fewest predictors. Moreover, our
power as the VIP and (ii) substantially smaller Type | Errorsimulation results indicated that the elastic net and lakad

rates. lower False Positive Rates (i.e., Type | Errors) when compared
' with OLS and ridge regression. Surprisingly, we did not obser
6.3.4. Sample Size and Power di erences in CV-MSE across the elastic net variations. Alitjio

To illustrate the in uence of sample size on our Type | andthe three penalized regression techniques produced comparable
Type Il Error rates, we plot the variable selection results fotesults in our example, this high degree of method compatgbili
then D 90 60 30 in Figures S4-S6, respectively. Comparings not guaranteed for all neuroimaging data. A Monte Carlo
Figure 4 and Figures S4-S6, it is apparent that reducing th@rocedure such as that suggested in Section 6 can be applied
sample size (i) slightly decreased our Type | error rates, ang determine which penalized regression model performs under
(ii) severely increased our Type Il error rates. With the igt&@d  di erent data conditions.

error standard deviation of D 1 and data from onlyn D Our second overarching goal was to compare the performance
60 subjects, our power to detect true predictors was 0.11 @four proposed bootstrapped QNT con dence interval approach
less for both VIP and QNT using the stringent threshold ofto Bunea et a (2017 VIP approach. To accomplish this goal, we
95% (indicated by blue cells for the active predictors in theyresented new theoretical results connecting the VIP and QNT
top rows). Consequently, for smaller samples, researcheys megelection rules, and we thoroughly compared the approaches
need to set 1 larger. However, Figures S4-S6 revealising both real and simulated neuroimaging data. With respec
that as decreases, both the VIP and QNT selection resultgur real data ndings, the QNT approach produced sparse results
improve substantially (indicated by brighter colored cdlts  (j.e., few selected predictors) across all models. Addilipna
the active predictors in the top rows). Finally, comparing VIPfrom a practical standpoint, we found it problematic to detect
vs. QNT selection, we see that VIP selection results in targein optimal VIP threshold as many predictors were retained at
Type | error rates and smaller Type Il error rates for the same0-90% cuto values. Our simulation study similarly indiee
selection threshold; this nding was expected, given theltés  that the QNT approach yielded more conservative results than

Theorem 1. the VIP, as indicated by lower False Positive rates. Thistrasul
especially salient in functional neuroimaging researchictviis
7. CONCLUSIONS an area that may be highly susceptible to False Positives(
' 2019.
7.1. Summary of Findings Finally, the real data analyses reveal that insula network

As psychology and neuroscience research continue to evolegherence predicts individual dierences in externalizing
multivariate methods for analyzing high-dimensional datatendencies. These ndings supplement past research, which has
are becoming more accessible. Methods such as ICA enalfeind that insula network integrity (e.g., anterior instdaterior
researchers to characterize behavioral mechanisms atiiess cingulate cortex) may underlie a range of psychiatric dissde
whole brain by decomposing the neural signal from millions of(seeNaqvi and Bechara, 2009; Wisner et al., 2013b; Carroll,et al.
voxels into a smaller number of components with interpretable2015. For instance, a recent meta-analysis (using the revised
functions @Beckmann, 2012; Du et al., 20).2However, activation likelihood estimation algorithm) found redutgray
the use of traditional regression approaches in this contexnatter loss in the anterior insula and dorsal anterior citega
is problematic when the number of networks begins toacross six diagnostic groups, e.g., schizophrenia, addijction
approach the number of subjects. Even with adequate statisticand anxiety Goodkind et al., 2015 Our ndings therefore
power, estimated OLS coe cients from traditional regressio support research that has linked insula function and morphglog
are unstable when substantial inter-predictor collingaris ~ with impulse-related disorders, such as addiction. Moreover,
present. Issues of high collinearity are especially conegrni because we utilized a community control sample, we highlight
for fMRI connectivity analysesSporns, 201)3where, due to the presence of insula-externalizing relationships evenhim t
the high cost of data collection, sample sizes are frequentBbsence of a clinical diagnosis.
modest and predictors are highly correlated. In this artiele
describe three penalized regression models—ridge regnessid.2. Alternative Applications
the elastic net, and the lasso—that are particularly welh coming years, multivariate data-driven techniques fatal
suited for the analysis of fMRI data as these methodseduction, model generation, and cross-validation wilcbeme
do not suer from the aforementioned limitations of OLS increasingly valuable as researchers continue to invéstiga
regression. clinically meaningful di erences in large-scale brain netks.
Our rst overarching goal in this paper was to compareAs such, the methods demonstrated here apply to other
the performance of penalized regression methods with OL§pes of neuroimaging studies, beyond our investigation of
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individual di erences in ICA-derived networks. For instaec can help answer that question. To compare the performance
penalized regression may be valuable for analyzing outpwif dierent penalized regression approaches on one's own
obtained from a graph-theoretical decomposition, wheredata, we recommend an approach similar to that employed in
researchers face similar challenges of modeling numero®&ection 5. In particular, the bootstrap QNT approach can be
brain-derived metrics, e.g., hundreds of between networkpplied to produce a graphic similar eigure 3 which can be
variables Bullmore and Sporns, 20p9Comparable situations useful for assessing the sensitivity of the bootstrap entthnce
can also arise in multi-seed connectivity analyses, paditul penalized regression to theand tuning parameters (i.e., for
if a researcher is interested in pairwise connections beiweessessing how and a ect variable selection). Furthermore,
vast numbers of brain regions (sé&eamchong et al., 20)1 to assess the e ectiveness of the penalized regression f&r one
This alternative application is particularly salient giverath own data, it is possible to use a Monte Carlo approach
between-network connectivity is pertinent for evaluatingsimilar to that used in Section 6. Speci cally, a Monte Carlo
brain health, such as age-related changes in functiongimulation can be used to assess the performance (e.g., Type
connectivity and psychopathologyBéker et al., 2014; Grady | and Type Il Error rates) of the methods under dierent
etal., 201p situations, e.g., sample sizes, signal-to-noise ratios,spasels,
Furthermore, the applicability of penalized regression incorrelation structures, etc. The R code that we provide in
neuroimaging research is not restricted to individual diegrces the Supplementary Material can be easily modi ed for such
analyses. For example, similar couplings of multivariateho@$é  analyses.
are useful for researchers examining within-subject \Heis, .
such as the relation between ICA-derived networks and -2 Concluding Remarks
behavioral responses or task-related hemodynamic modefdie utility and power of penalized regression in the clinical
(Calhoun et al., 2092 Researchers may also be interested ifeuroscience eld will only amplify as increasing numbers of
characterizing group di erences via temporal or spatial netwo arge fMRI datasets become publicly available. The Human
information (Jafri et al., 2008; Ma et al., 201this latter aim Connectome Project\an Essen et al., 20)lds one such
has become a recent focus in the schizophrenia and bipol&*ample, where researchers have access to an ever-expanding
research literaturesCalhoun and Adali, 2012; Calhoun et al., f/MRI dataset (end of goal oh D 1200). This advance
2019. in the neuroimaging eld stresses the need to adopt newer
Lastly, we want to emphasize that penalized regression c&tatistical techniques, like penalized regression, toractodate
also be utilized when the variables of interest are voxals, #igh dimensional neuroimaging data. In this article, we éav
opposed to brain networks or regions of interest; howeverprOVided both theoretical and Monte Carlo results to advance
we remind the reader of the motivation to use a set ofthe use of penalized regression with neuroimaging data. In
functionally homogeneous predictors (see Section 5.1).eNo@n online supplement, we also provide open-source R code to
that the use of voxels as predictors could pose a proble#ﬁ'eCt penalized regression tuning parameters and to evaluate
for the lasso, which tends to arbitrarily select one vagabl fegression coe cientsigni cance using nonparametric boo#gt
(voxel) out of a group of correlated variables (voxels), se@ethods. We hope that these resources will help other
Section 4.2. For voxel-wise analyses, we recommend applyifRpearchers to better understand their functional neuraging
either the elastic netZou and Hastie, 20Q%or the group lasso data.
(Yuan and Lin, 200p6to encourage functionally homogeneous
voxels to be either selected or excluded from the model as AUTHOR CONTRIBUTIONS
roup.
gretp SA, NH, and NW contributed to the design, analysis, and
7.3. Limitations writing of the manuscript. CM contributed to the writing and
We now mention the limitations of our proposed QNT approach. editing of the manuscript. CD contributed his data and edited
Our simulation results indicate that the QNT method waslstiy ~ the nal manuscript. AM contributed to the editing of the
less powerful than the VIP method for the same signi cancgnanuscript.
threshold. More speci cally, the VIP demonstrated a higher hi
rate for our two active predictors as sample size decreased, WWCKNOWLEDGMENTS
with a concomitant higher False Positive rate. This e ect was
more pronounced for smaller sample sizes, @.g., 60 subjects. This study was supported by grants to CD from the National
Thus, for typical SNRs encountered in behavioral neuroimggininstitute on Drug Abuse (NIDA) (R03 DA029177-01A1)
research, a sample size of approximately D 100 may be and from the National Science Foundation (NSF) (SES-106
required. However, ridge regression may prove useful follgma 1817).
samples (cfFigure 4and Figures S2—-S6).
SUPPLEMENTARY MATERIAL
7.4. General Recommendations
When applying penalized regression, a neuroscientist ofterisva The Supplementary Material for this article can be found
to know which penalized regression method will be most usefubnline at: http://journal.frontiersin.org/article/10389/fnins.
for their particular data. The methodology presented inthippa 2016.00344
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